

Monetary Policy, Uncertainty, and Credit Supply

Discussion by Paul Reimers, Sep. 18th 2025

Paper in a nutshell

- How does dispersion/asymmetry in banks' inflation forecasts shape bank lending rates
- Model: Single monopolistic bank facing uncertainty about <u>probability distribution</u> of π
 - Mechanics: Choose R_l^* that maximizes profits, given uncertainty about the probability distribution of π
 - Main propositions: Loan pricing more expensive for wider and positively skewed densities of π
- Empirics: How do bank lending rates correlate with indicators that measure dispersion/asymmetry by aggregating inflation forecasts of banks

Model: Why monopolistic setup, and are all model features consistent?

- Why just a single monopolistic bank facing uncertainty about <u>probability distribution</u> of π ?
 - Not: Multiple banks with individual probability distributions
 - My guess: Monopolistic setup for ease of aggregation & derivation of R_l^* ?
- But: Funding costs modeled by having deposit rates as function of π .
 - Doesn't this imply there is competition for deposits?
 - Shouldn't monopolists set deposit rate marginally>0, and would this kill part of the real return channel?
- Proposal: Have a model setup with multiple banks (each with its own probability distribution)
 - More intuitive to derive and discuss main propositions (1 + 3)
 - Plus: Propositions 1 & 3 do not hinge on aggregation anyways?

Bridging model & data/empirics

- Propositions 1 & 3 of model tell a bank-level story
 - I translate propositions to lending rates of <u>two banks with distinct distributions of π correct?</u>
 - Datawise, I'd expect that you test those propositions based on the lending rates of two banks with distinct SPFs (Matching problem?)
 - \rightarrow All else equal, do banks with more uncertain/asymmetric inflation expectation exhibit higher rates?
- But in empirics, you use **aggregate measures** of forecast dispersion/asymmetry in inflation expectation → All else equal, during times of high dispersion/asymmetry the lending rate is higher.
 - But to what extent does this really validate the bank-level mechanisms you have in mind?
 - Instead: I'd then expect that you show how the model propositions aggregate up...
 - ...which in turn requires that we rethink the setup (monopolistic/competitive), no?

Wrapping up

- Your paper addresses and important and relevant issue for monetary policy
 - → Based on the intro/abstract, the paper does what it promises
- I see an even more substantial contribution if you provided a full-fletched picture, by
 - lifting the theoretical bank-level impact of different beliefs on lending rates to the aggregate
 - → Which is what you test empirically, as of now...
 - and by breaking down the empirical part of the analysis to the bank-level
 - → Match banks' individual SPFs from ECB-SPF/Consensus (?) to AnaCredit
 - → Test theoretical propositions 1 & 3

Some questions – all meant constructively of course!

- The objective is "non-increasing" in π why? Is this reasonable?
 - Doesn't this mean that lower default risk from higher π always outweighs π 's marginal impact on the real return channel?
 - What should work against this is the sluggishness of deposit rates, no?
- It took me a while to understand the level of variation that you use bank or aggregate level
 - P.10 ,,we analyze SPFs at the individual forecaster level, accounting for [...] "
 - P.13: "we incorporate each bank's inflation forecast using our SSI, which summarizes the strength [...]"
 - P.6 in version 2: "we capture <u>banks' inflation</u> expectations [...] & "Banks facing higher uncertainty or asymmetry in their inflation [...]"
 - But the way you construct NIU/ASI (SSI?) you can't be using bank-level variation? (Avg over forecasters!)
 - You can easily remedy this by being clearer/more precise/more transparent about the data
- Why this focus on latent segments/regimes?
 - You don't discuss the resulting regimes why not? What characterizes them?
 - The one regime you discuss briefly (2) puts up more questions than answers: What do you mean with it identifes established relationships? Why don't you include relationship lending as regressor, if this is so important?
- How can a change of NIU which enters linearly additive (I guess?) cause skewness in the distribution of the fits?
 - Is this coming from the different components?