Monetary Policy, Uncertainty, and Credit Supply

Eric Vansteenberghe*

18th September 2025 Banka Slovenije

^{*} Banque de France. The views expressed in this paper are those of the author and do not necessarily reflect those of the Banque de France.

Research Question.

How does inflation forecasts shape credit conditions?

- Higher uncertainty or asymmetry leads banks to raise rates and tighten credit.
- Financially constrained firms are hit hardest.
- Expectations' uncertainty or asymmetry matter for CB.

Key Result:

- ► Theory: Dispersion in banks' inflation forecasts → higher loan rates and more credit rationing.
- Evidence: In France, higher uncertainty/asymmetry raise loan rates by >10 bps (~ 0.5 bn € annually).

In a nutshell

- Theoretical model: banks' subjective forecast & their lending decisions;
- 2. Parameter-free uncertainty measure;
- 3. **Empirical estimation** of the effect of uncertainty to Non-Financial Corporations credit constraints.

Impact of lending conditions from 25th to 75th percentile?

Source: ECB-SPF, 1-year ahead inflation forecast.

What is an "Uncertain Forecast"?

(MPS). A forecast Y is an <u>uncertainty-inflated</u> version of X if it is a mean-preserving spread:

$$Y = X + Z$$
, $\mathbb{E}[Z] = 0$, $Z \perp X \Rightarrow \mathbb{E}[Y] = \mathbb{E}[X]$.

Equivalently, X second-order stochastically dominates Y:

$$\int_{-\infty}^t F_Y(s) ds \geq \int_{-\infty}^t F_X(s) ds \quad \forall t,$$

so that for any concave u, $\mathbb{E}[u(X)] \geq \mathbb{E}[u(Y)]$.

4/19

What is a "Strong Asymmetric Forecast"?

- Take a subjective probability distribution (SPD);
- 2. Measure its median versus a target;
- 3. Measure its skewness.

Source: Author's illustration

"The bank believes that inflation will be above the 2% target, and has an asymmetric bias toward higher inflation^a."

- 1. SPD median > 2%;
- 2. SPD skewness > 0.

^awrt to his belief, not the CB target.

This paper

1. Theoretical Model

- Extends Stiglitz and Weiss (1981), asymmetric information, with dispersion in banks' inflation beliefs
- Predictions:
 - ► Higher inflation uncertainty or skewness ⇒ higher loan rates (credit tightening)

2. Empirical Analysis

- ▶ Data: AnaCredit loan-level dataset for France (2018–2025)
- Method: Finite mixture density regressions
- Findings:
 - Uncertainty and Asymmetry both raise loan rates and skew distributions
 - ► Effects concentrated in the <u>right tail</u> ⇒ higher costs for financially constrained firms
 - Forecast disagreement: weaker, less systematic effect

Table of Contents

Theoretical Model

Empirical Analysis

Conclusion

Theoretical Model

Building blocks:

- Monti–Klein framework of monopolistic banking (Ho and Saunders, 1981; Monti et al., 1972)
- Credit rationing under asymmetric information (Stiglitz and Weiss, 1981)
- Risk aversion and subjective beliefs: uncertainty, skewness, ambiguity (Vansteenberghe, 2025)

Main ingredients:

- ightharpoonup Loan rate R_L set to maximize expected utility of real profits
- ▶ Deposit rate $R_D(\pi)$ follows a Taylor-type rule
- Default probability $p(R_L, \pi, X)$ endogenous, convex in R_L , decreasing in π (Bhamra et al., 2023; De Marco and Friedheim, 2025)
- ► Two channels:
 - ► Real Return Channel
 - Default Risk Channel

Proposition 1: Uncertainty-Induced Credit Tightening

Statement

Let F be a distribution of inflation and \widetilde{F} a mean-preserving spread (MPS) of F. Then the optimal loan rate is strictly higher under \widetilde{F} :

$$R_L^*(\widetilde{F}) > R_L^*(F).$$

- ► Higher inflation uncertainty ⇒ precautionary increase in lending rates
- Risk-averse banks demand a premium to insure against tail risks

Proposition 2: Uncertainty-Induced Credit Rationing

Statement

If $D(R_L^*) > S_F(R_L^*)$ under beliefs F, then for \widetilde{F} (a mean-preserving spread of F):

$$S_{\widetilde{F}}(R_L) < S_F(R_L) \quad \forall R_L,$$

so credit rationing increases.

- Greater uncertainty shifts the entire loan supply curve inward
- Adverse selection and moral hazard amplify rationing

Proposition 3: Skewness-Induced Credit Tightening

Statement

For distributions F, \widetilde{F} with equal means, if \widetilde{F} has greater skewness, then:

$$R_L^*(\widetilde{F}) > R_L^*(F).$$

Banks react to asymmetric tail risks by charging higher rates

Table of Contents

Theoretical Mode

Empirical Analysis

Conclusion

Empirical Analysis: Key Determinants of Loan Pricing

Loan maturity

- ▶ Longer maturities ⇒ higher rates (term premium, exposure to interest rate and solvency risk)
- ➤ Yield curves: upward-sloping for high-grade issuers, flatter for riskier firms (Merton, 1974)

Loan volume

- ▶ Larger loans: bargaining power, scale economies ⇒ lower spreads
- Very large exposures: concentration risk ⇒ higher required returns

Borrower credit risk (PD)

- ► Higher PD ⇒ higher rates (risk compensation + capital charges)
- Exclude firms with PD > 5% ("zombies") (Caballero, Hoshi and Kashyap, 2008)

Empirical Analysis: Inflation Expectations and Controls

Bank inflation expectations

- Normalized Inflation Uncertainty (NIU) and Asymmetry Strength Index (ASI): level-orthogonality of the subjective forecast (Vansteenberghe, 2025)
- Forecast disagreement: cross-bank heterogeneity

Macroeconomic & bank-level controls

- Industrial production: captures cyclical credit risk
- Lender fixed effects: business model, market power, composition
- Sector dummies: absorb industry-specific risk factors

Estimation Approach: Finite Mixture Model

Motivation

- Loan pricing is heterogeneous across banks and borrowers (pricing strategies, firm size, sector, credit quality).
- ► Standard regressions impose a single pricing rule ⇒ miss segmentation in credit markets.

Method

- Finite mixture of generalized linear models (Grün and Leisch, 2008)
- Captures latent regimes in loan pricing
- Estimated via maximum likelihood with EM algorithm

Relevance for credit conditions

- Identifies latent pricing regimes and tail behavior in loan-rate distributions (Lacroix, 2008)
- Captures heterogeneous transmission of monetary policy
- Shows how inflation uncertainty and asymmetry generate right-tail credit tightening

Estimation Approach: Specification

Let r_i denote the interest rate on loan i, conditional on covariates x_i:

$$f(r_i \mid x_i) = \sum_{g=1}^{G} \pi_g f_g(r_i \mid x_i; \beta_g),$$

where

- $ightharpoonup \pi_g$: mixing probability of regime g $(\sum_{\sigma} \pi_g = 1)$
- $ightharpoonup f_g$: likelihood contribution of regime g
- ▶ Where:
 - $ightharpoonup r_i \sim \mathcal{N}(\mu_{ig}, \sigma_g^2)$
 - $\mu_{ig} = x_i' \beta_g$
 - ► Covariates *x_i*: loan characteristics, credit risk, inflation expectations, fixed effects

Main Results: Uncertainty and Asymmetry

- ► Normalized Inflation Uncertainty (NIU):
 - ► Higher NIU shifts loan-rate distribution to the right and increases skewness
 - ► Average rate rises from 2.47% to 2.62% (median, +14 bps)
 - ► Effect reaches +16 bps in the right tail (q75)
 - \blacktriangleright Economic cost: ≈ 0.5 bn euros annual additional interest expenses for NFCs

Asymmetry Strength Index (ASI):

- Positive skewness in inflation beliefs increases both median and right-tail loan rates
- ► Median rises from 2.17% to 2.32% (+15 bps), q75 from 2.70% to 2.88% (+18 bps)
- lacktriangle Comparable magnitude to NIU \Rightarrow second and third moments independently matter
- ► Contrast: Forecast disagreement shows weaker and less systematic effects.

Table of Contents

Theoretical Mode

Empirical Analysis

Conclusion

Conclusion

Theoretical contribution

- Extends Monti–Klein and Stiglitz and Weiss (1981) with risk aversion, subjective beliefs, and ambiguity aversion
- ▶ Predicts: higher inflation uncertainty and asymmetry ⇒ tighter credit, stronger rationing

Empirical evidence

- Using French loan-level data (AnaCredit, 2018–2025)
- ► Finite mixture regressions uncover latent pricing regimes
- Normalized Inflation Uncertainty (NIU) and Asymmetry Strength Index (ASI) systematically increase loan rates and skew their distribution
- ► Effects concentrated in the right tail ⇒ financially constrained firms disproportionately affected

Implications

 Uncertainty and asymmetry in inflation expectations constitute independent and significant channels of monetary policy transmission.

References I

- Bhamra, Harjoat S, Christian Dorion, Alexandre Jeanneret, and Michael Weber. 2023. "High inflation: Low default risk and low equity valuations." The Review of Financial Studies.
- Caballero, Ricardo J, Takeo Hoshi, and Anil K Kashyap. 2008. "Zombie lending and depressed restructuring in Japan." American economic review, 98(5): 1943–1977.
- De Marco, Filippo, and Diego Friedheim. 2025. "Banks' Inflation Expectations and Credit Allocation: the Fisher Effect." Available at SSRN 5409622.
- **Grün, Bettina, and Friedrich Leisch.** 2008. "FlexMix version 2: finite mixtures with concomitant variables and varying and constant parameters." <u>Journal of Statistical Software</u>, 28: 1–35.

References II

- Ho, Thomas SY, and Anthony Saunders. 1981. "The determinants of bank interest margins: theory and empirical evidence." Journal of Financial and Quantitative analysis, 16(4): 581–600.
- Lacroix, Renaud. 2008. "Assessing the shape of the distribution of interest rates: lessons from French individual data." <u>Banque de</u> France Working Paper.
- Merton, Robert C. 1974. "On the pricing of corporate debt: The risk structure of interest rates." The Journal of finance, 29(2): 449–470.
- Monti, Mario, et al. 1972. Deposit, credit and interest rate determination under alternative bank objective function.

 North-Holland/American Elsevier Amsterdam.

References III

Stiglitz, Joseph E, and Andrew Weiss. 1981. "Credit rationing in markets with imperfect information." The American economic review, 71(3): 393–410.

Vansteenberghe, Eric. 2025. "Uncertain and Asymmetric Forecasts." SSRN.