Financial conditions and the macroeconomy: A two-factor view

Marco J. Lombardi (BIS) Cristina Manea (BIS) Andreas Schrimpf (BIS & CEPR)

11th Research Workshop of the MPC TF on Banking Analysis for monetary policy Ljubljana, 18 September 2025

Financial conditions indices

- A summary of the evolution of financing conditions at the broad economy level
 - ightarrow Relevant as an intermediate step in the transmission of monetary policy
- Weighted averages of key financial variables spanning across different financial markets
 - \rightarrow e.g. GS-FCI: five variables (nominal short-term rate, nominal long-term rate, corporate spread, equity prices, exchange rate) weighted based on their impact on GDP growth
- Challenge of using off-the-shelf indices:
 - → We don't know what drives their dynamics
 - ightarrow Especially problematic when components pull in different directions

A taxonomy of existing indices

1. Depending on variable composition:

- Financial conditions indices (FCI):
 - → e.g. GSFCI, Fed's FCI-G, Chicago Fed, St. Louis Fed
- Financial stress indices (FSI):
 - ightarrow e.g. Bloomberg, Kansas City Fed, CISS, ADB FSIs

2. Depending on weighting methodology and interpretation:

- Weights based on the impact on GDP growth
 - ightarrow e.g. GSFCI, Fed's FCI-G
- Statistical weights
 - ightarrow e.g. Chicago Fed National FCI, Bloomberg, CISS

Summary of our research (so far)

- We construct a new data-driven index based on a dynamic factor model (DFM)
 - → Address the black-box issue with common FCIs
 - → Enables us to assess how different "ingredients" contribute to the factors
- Factor loadings enable us to associate each factor to different facets of "financial conditions"
 - → The level of yields
 - → Risk attitudes and perceptions
- Factors can be combined using different weighing schemes to form a comprehensive index
 - → Different target variables lead to different weights
 - → The risk-factor has a stronger bearing on measures of credit and economic activity...
 - ightarrow ...especially for tail events
 - \Rightarrow We plug factors into the SVAR model by Gilchrist and Zakrajsek (2012) to assess their role in the transmission of risk shocks
 - \Rightarrow And run a local projections exercise to assess the transmission of monetary policy shocks through the factors

Constructing an FCI

The "ingredients" of our FCI for the US...

- 1. Short-term funding: FFR, 3m T-bills, CP/CD rates
- 2. Safe yields: Yield curve, 1y-10y
- 3. Risky yields: Corporate bond yields (AAA, BBB, IG, HY)
- 4. <u>Spreads:</u> Slope of the yield curve, spreads on risky bonds
- 5. Equities: Returns, market cap, dividend yields
- Bank rates: Mortgages, consumer and commercial credit

The dynamic factor model

• Let $X_{1:T}$ be a N-dimensional multiple time series with T observations; its factor representation is

$$X_t = \Lambda F_t + e_t, e_t \sim N(0, R)$$

where F_t is a matrix of r factors and Λ is the matrix of factor loadings

• The common factors follow an AR process of order p:

$$F_t = \sum_{i=1}^{p} A_i F_{t-i} + u_t, u_t \sim N(0, Q)$$

- Unobserved factors are reconstructed through Kalman filter, and estimated via ML
- X_t may have missing elements (also due to mixed frequencies) \Rightarrow EM algorithm (Banbura and Modugno 2014)

Factor loadings

Two factors explain about 60% of total variance

Figure 1: Average factor loadings for each bloc

The two factors (and their contributors)

The factors in the euro area

- Substantial heterogeneity in F₂
- Reflecting market segmentation...
- ...especially during the euro area crisis

The factors and the

macroeconomy

Predictive regressions

To assess the additional predictive power of the factors over a benchmark AR(p) model, we run the predictive regressions:

$$\Delta^h Y_{t+h} = \alpha + \sum_{i=1}^p \beta_i \Delta Y_{t-i} + \gamma_i FC_t(i) + \epsilon_{t+h},$$

The partial R^2 of the factors can be used as weight to construct a composite index

Regression results

Financial indicator	Horizon: one quarter		Horizon: one year	
A. Credit growth F1	-0.08	_	-0.11	_
F2	[-1.39] —	-0.23** [-2.23]	[-1.47] —	-0.24** [-2.26]
Partial R^2	0.03	0.13	0.04	0.12
B. Investment growth F1	-0.17	_	-0.30	_
F2	[—0.96] —	-0.95** [-2.23]	[—1.53] —	-0.74** [-2.17]
Partial R^2	0.01	0.18	0.04	0.14
C. Real GDP growth F1	8.0-	_	-0.12**	_
F2	[-0.9] —	-0.46***	[-2.02] —	-0.20**
Partial R^2	0.01	[-3.30] 0.16	0.06	[-2.01] 0.10

 Table 1: The Predictive Power of Financial Conditions for Economic Activity

Asymmetry in the predictive distributions

We run quantile regressions à la Adrain, Boyarchenko and Giannone (2019) of GDP growth, its lag and the factors

Figure 3: F_2 has strong effects on the left tail

Asymmetry in the predictive distributions

Figure 4: F_1 has milder effects on both tails

The transmission of risk shocks

- We build on the structural SVAR by Gilchrist and Zakrajsek (2012), replacing the 10-year yield with F_1 , and the EBP with the F_2
- Hence the VAR contans the following variables (in this order):
 - (i) the log-difference of real PCE;
 - (ii) the log-difference of real business fixed investment;
 - (iii) the log-difference of real GDP;
 - (iv) inflation;
 - (v) the log-difference of real total credit to the private nonfinancial sector;
 - (vi) the quarterly average of F_2 ;
 - (vii) the quarterly excess stock market return;
 - (viii) the quarterly average of F_1 ;
 - (ix) the quarterly average of the one-year-treasury yield.
- The identifying assumption is that shocks to F_2 affect economic activity and inflation with a lag, while government bond yields and stock prices can react contemporaneously

Responses to a risk shock

Monetary policy transmission

through the factors

What does monetary policy do to factors?

- We estimate the dynamic responses of each factor to monetary policy surprises using a local projection approach
- For each forecast horizon h = 0, ..., H 1 we run a separate regression of factors F_1 and F_2 on a high-frequency identified monetary policy shock (mps_t) , and control variables \mathbf{x}_t :

$$F_{t+h} = \alpha_h + \beta_h \cdot mps_t + \mathbf{A_h} \cdot \mathbf{x}_t + e_{t+h},$$

- The matrix \mathbf{x}_t includes lags of the dependent variable, contemporaneous and lagged values of the log-transformed CPI, of the unemployment rate, of the log-transformed industrial production, and of the Commodity Price Index
- "Pure" monetary policy surprises à la Jarocinski and Karadi (2020)

Responses of the factors to a monetary policy shock

Figure 6: Local projections of the factors on monetary policy shocks à la Jarocinski and Karadi (2020)

Wrapping up

- We look at financial conditions through the lens of a data-rich DFM
- The various facets of financial conditions are captured by different factors
 - The first factor captures the overall level of rates
 - The second factor captures conditions in risky segments (corporate credit, equities)
- The second factor has a stronger bearing on macroeconomic conditions
 - It receives a higher weight if one wants a composite index
 - It has notable asymmetric effects on the left tail
 - It can be used to pin down risk shocks in structural VARs
- Monetary policy has a grip on both factors

