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Abstract

The Multiplicative Ergodic Theorem provides a novel general method-
ology to analyze rational expectations models with stochastically vary-
ing coefficients. The approach is applied for the first time to economics
and analyzes the canonical New Keynesian model with a Taylor rule
which switches randomly between an aggressive and a passive reaction
to inflation. The paper delineates the trade-off of the central bank of
being passive in some periods and aggressive in others. Moreover, it is
shown how this trade-off depends on the stochastic process governing
the randomness in the central bank’s policy. Finally, explicit solution
formulas are derived in the case of determinateness as well as inde-
terminateness. In doing so he paper considerably extends the current
approach.

JEL classification: C02, C61, E40, E52
Keywords: time–varying rational expectations models, New Keyne-
sian model, Taylor rule, Lyapunov exponents, multiplicative ergodic
theorem

*The paper benefited from an afternoon long productive discussion with Roger Farmer.
I want to thank him for his comments and encouragement. I also thank Andreas Bachmann
for reading and commenting on the manuscript. The usual disclaimer applies.
Department of Economics, University of Bern, Schanzeneckstrasse 1, P.O. Box 8573, CH-
3001 Berne, Switzerland. Email: klaus.neusser@vwi.unibe.ch



1 Introduction

The presupposition of constant coefficients in affine (linear) rational expec-
tations macroeconomic models is a very tenuous position. Indeed there are
several convincing reasons to believe in time-varying coefficients instead.
First, time-varying coefficient models arise naturally from the linearization
of nonlinear models along solution paths (Elaydi, 2005, p. 219–220). Sec-
ond, the relationships describing the economy undergo structural changes
giving rise to drifting coefficients as emphasized by Lucas’ critique. F.e.
Sargent (1999) provides an interpretation in terms of self-confirming equi-
libria. Third, policies and policy rules are subject to change. Cogley and
Sargent (2005), Primiceri (2005), or Chen, Leeper, and Leith (2015),
among many others, provide empirical evidence with regard to U.S. monetary
policy.

As convincing as these arguments may be, a rigourous analysis of linear,
respectively affine, rational expectations models with stochastically varying
coefficients is hindered by the fact that the eigenvalues of the matrices in-
volved provide in general no information about the stability of the underlying
difference equation.1 Hence the spectral theorem (see Meyer, 2000, chapter
7.2) which underlies the usual solution formulas in the case of constant co-
efficients is no longer applicable. Fortunately, there is perfect substitute for
the eigenvalues in terms of Lyapunov exponents. The Lyapunov exponents
are defined as the asymptotic growth rates of the endogenous variables along
solution paths. The celebrated Oseledets Multiplicative Ergodic Theorem
(MET) which is at the heart of the theory of random dynamical systems
then lifts the eigenvalue\eigenvector analysis typically used in the constant
coefficient case to the case of stochastically varying coefficients using the Lya-
punov exponents\spaces.2 Thus, the MET provides a perfect substitute for
the spectral theorem and, consequently, will allow the derivation of explicit
solution formulas for rational expectations model with stochastically varying
coefficients. These solution formulas turn out to be in the spirit of Blan-
chard and Kahn (1980), Klein (2000), and Sims (2001) and are therefore
directly interpretable in economic terms. There is, however, a price to pay for

1This is a well-known fact. Elaydi (2005, p. 191), Colonius and Kliemann (2014,
pp. 109–110), and Neusser (2017, appendix A) present several simple examples to il-
lustrate this claim. Francq and Zaköıan (2001) provide further illustrations in a time
series context.

2Colonius and Kliemann (2014) provides a clear and accessible presentation of the
MET by relating it to the standard eigenvalue\eigenspace analysis. The monograph by
Arnold (2003) and Viana (2014) also provide elaborated and excellent expositions, but
are mathematically more evolved. Neusser (2017) presents a first application of the MET
to an economic model.
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this generalization: the Lyapunov exponents and their associated Lyapunov
spaces cannot, in general, be computed analytically, but are only accessi-
ble via numerical procedures. This alleged disadvantage is compensated by
powerful numerical algorithms which do not only allow the computation of
the Lyapunov exponents, but also their corresponding Lyapunov spaces (see
Dieci and Elia (2008), Froyland et al. (2013), and Neusser (2017) for
details). The contribution of this paper is the presentation of a comprehen-
sive theory for analyzing and solving random coefficient rational expectations
models. The theory relies on the powerful MET which is applied for the first
time to analyze dynamic models in economics.

This paper shares the ambition of Farmer, Waggoner, and Zha (2009)
and Farmer, Waggoner, and Zha (2011) to provide a solid and adequate
solution methodology for forward-looking Markov-switching rational expec-
tations models. These papers rely on the mean square stability concept as
proposed by Costa, Fragoso, and Marques (2005) in the context of op-
timal control theory and effectively focus on the size of the spectral radius of
a specific matrix (see Farmer, Waggoner, and Zha (2009, equation (14))
or Davig and Leeper (2007, proposition 1), but also Bougerol and Pi-
card (1992) and Francq and Zaköıan (2001, theorem 2) in the context of
Markov-switching multivariate ARMA models, and Foerster et al. (2016,
section 4.2) and Barthélemy and Marx (2017) in the context of nonlinear
models). This approach is mathematically equivalent to the analysis of the
top (largest) Lyapunov exponent and is sufficient, at least for the examples
considered, to characterize the stability of the model. However, this exclusive
focus on the top Lyapunov exponent disregards the rich information encoded
in the Lyapunov spectrum (set of all Lyapunov exponents) and the associated
Lyapunov spaces. This becomes particularly evident when characterizing the
properties of more sophisticated models with some initial conditions and\or
indeterminate models (see Proposition 2 of this paper).

We use the canonical New Keynesian macroeconomic model with Tay-
lor rule as a vehicle to expose these new concepts and to demonstrate their
practicability and usefulness. This application is, however, not just an illus-
trative example, but provides results which are of interest in their own right.
It is well-known that, in this model, the central bank must respond aggres-
sively against inflation in order to obtain a unique solution (determinateness).
When the central bank is passive, the model fails to have a unique solution
(indeterminateness). An extreme situation arises when the policy is based
on central bank ’s projection taking the interest rate path as given. This
implies that the Taylor rule is effectively eliminated from the model which
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then becomes indeterminate.3 According to Gaĺı (2011) this is or has been
the practice at many central banks. He goes on to discuss remedies of the
resulting indeterminacy problem. In particular, he discusses the possibility
that a Taylor rule with an aggressive central bank is restored at some known
fixed date in the future (see also Laséen and Svensson, 2011, for a similar
analysis). More in line with the scope of this paper, Davig and Leeper
(2007) investigate the consequences of a regime-switching Taylor rule. Their
analysis, however, relies on a restrictive and perhaps inadequate setting as
argued by Farmer, Waggoner, and Zha (2010). This paper proposes a
more comprehensive analysis of the issue of randomly switching monetary
policy rules. Thereby we delineate the trade-off of the central bank of being
passive in some periods and aggressive in others. Moreover, it is shown how
this trade-off depends on the stochastic process governing the randomness in
the central bank’s policy. Finally, we provide an explicit solution formula for
the determinate as well as for the indeterminate case.

The paper proceeds by first reviewing the New Keynesian model with
constant coefficients. This allows to introduce the notation and to connect
to the standard literature. We then analyze the random coefficient case
theoretically. Based on this analysis, we present some simulation results
by considering random switches between an active and a passive monetary
policy against inflation. A conclusion finally closes the paper.

2 The New Keynesian Model

2.1 The Setup

The canonical New Keynesian macroeconomic model is one workhorse of
modern macroeconomics and has therefore been extensively analyzed in the
literature. In this paper we investigate the determinacy of this model and
take the microeconomic foundation as given. The papers most closely related
to this one are Lubik and Schorfheide (2004), Farmer, Waggoner, and
Zha (2009), and Gaĺı (2011). The model typically comprises the following
three equations:

yt = Etyt+1 − σ−1(it − Etπt+1) + udt , (IS-equation)

πt = βEtπt+1 + κyt + ust , (forward-looking Phillips-curve)

it = φπt πt + φyt yt, (Taylor-rule)

3For an assessment of the Taylor rule see the papers collected in Koenig, Leeson,
and Kahn (2012).
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where the endogenous variables yt, πt, and it denote income (output gap),
the rate of inflation and the nominal interest rate. udt and ust are exogenous
demand and supply shocks, respectively. All variables are indexed by time
t ∈ Z. The structural parameters of the IS-equation and the Phillips-curve
are supposed to be fixed and to obey the following restrictions: σ > 0, κ > 0,
and 0 < β < 1. In contrast, the parameters of the Taylor-rule φπt and φyt
are considered to vary randomly over time according to an exogenously given
regular Markov chain which will be specified in detail in Sections 2.3 and 3.
The coefficients of the Taylor rule are assumed to satisfy φπt ≥ 0 and φyt ≥ 0,
independently of t. If there is no confusion, the time index is sometimes omit-
ted for simplicity. Finally, Et denotes, as usual, the conditional expectations
operator based on information up to and including period t (see Appendix A
for details). This information includes, in particular, the knowledge of the
mechanism generating the randomness of the coefficients.

For technical reasons we have to place some restriction on the stochastic
process {ut} = {(udt , ust)′}. A very weak assumption is the following integra-
bility condition.

Assumption 1 (Integrability).

E log+ ‖(udt , ust)′‖ <∞

where log+ x = max{0, log x}.

This assumption is weaker than E log ‖(udt , ust)′‖ <∞. Note that {(udt , ust)′} is
allowed to be autocorrelated. Hence, ut can be specified as an autoregressive
process which is often assumed in practice.

The model can be expressed in terms of xt+1 = (yt+1, πt+1)′ by insert-
ing the Taylor-rule in the IS-equation to obtain the following affine random
coefficient expectational difference equation:

Etxt+1 = GFtxt −Gut = Atxt + bt, t ∈ Z, (2.1)

where

G =

(
1 − 1/(βσ)

0 1/β

)
and Ft =

(
1 + φyt/σ φπt/σ
−κ 1

)
.

Thus, the New Keynesian model has the format of a boundary value prob-
lem. It consists of the affine expectational difference equation (2.1) and a
boundedness constraint :

Constraint (boundedness constraint). There exists M ∈ R such that

‖xt‖ < M <∞ for all t ∈ Z

where ‖.‖ is a suitable norm.
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The above constraint is supposed to hold almost surely. Note that the New
Keynesian model as outlined above has no initial conditions.4 The model will
be called determinate if the boundary value problem (i.e. the difference equa-
tion (2.1) plus the boundedness constraint) has a unique solution. Otherwise
the model is said to be indeterminate.

If {x(1)
t } and {x(2)

t } are two solutions of the difference equation (2.1), then

{x(1)
t − x

(2)
t } satisfies the linear expectational difference equation

Etxt+1 = Atxt. (2.2)

This implies that the superposition principle holds and that every solution
{xt} of the affine difference equation (2.1) is of the form

xt = x
(g)
t + x

(p)
t

where x
(g)
t denotes the general solution of the linear equation (2.2) and x

(p)
t

a particular solution to the general equation (2.1).
In order to find the general solution to the linear equation, define the

random matrix product {Φ(t)} as

Φ(t) =


At−1 . . . A1A0, t = 1, 2, . . .;
I2, t = 0;
A−1
t . . . A−1

−1, t = −1,−2, . . .

Note that Φ(t) is well-defined because the parameter restrictions of the model
imply that At is nonsingular, i.e. At ∈ GL(2), for all t ∈ Z, irrespective of
the values of φπt and φyt .

5 When we want to emphasize the dependence on
the realization of the stochastic process, we write A(θtω) for At and Φ(t, ω)
for Φ(t) where ω ∈ Ω is an outcome from the underlying probability space
(Ω,F,P) and where θ denotes the time shift operator (see Appendix A for
details).

Next define a new variable mt as mt = Φ(t)−1xt. It is easy to see that
{mt} is a martingale:

Etmt+1 = Et
(
Φ(t+ 1)−1xt+1

)
= Φ(t+ 1)−1Etxt+1 = Φ(t+ 1)−1Atxt = mt.

Similarly, the time reversed process m̃t = m−t, t ∈ Z, is also a martingale.
This implies without any additional assumptions that there exists a random
variable x such that limt→∞mt = x a.s. and in mean (see Grimmett and

4The approach can be easily generalized to encompass models with initial conditions
(see Neusser, 2017)

5The determinant of At is 1/β + (κφπt + φyt )/βσ > 1 (see Section 2.2).
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Stirzaker, 2001, section 12.7). Moreover, the original martingale can be
reconstructed from x by setting mt = E(x | Ft). Thus, the space of martin-
gales can be continuously parameterized by the space of random variables
which are measurable with respect to F = σ

(⋃
t∈Z Ft

)
.6 This implies that

the general solution of the linear equation (2.2) can be represented as

xt = (At−1 . . . A1A0)x0 = Φ(t)x.

where x is some random variable measurable with respect to F. Given some
realization ω ∈ Ω, the solutions (orbits) are then denoted by xt = ϕ(t, ω, x) =
Φ(t, ω)x(ω).

The existence and the stability properties of the solutions given by equa-
tion (2.1) thus depend crucially on the convergence of the matrix product
Φ(t, ω). To study this issue, we introduce the notion of Lyapunov exponents
λ(ω, x). These exponents are defined as the asymptotic growth rates of solu-
tions of the linear random dynamical system xt+1 = Atxt = A(θtω)xt taking
x0 = x 6= 0 as a starting value:

λ(ω, x) = lim sup
t→∞

1

t
log ‖ϕ(t, ω, x)‖. (2.3)

In the case of a constant coefficient matrix, ϕ(t, ω, x) = Atx and the Lya-
punov exponents are just the logarithms of the distinct moduli |µk| of the
eigenvalues µk of A.7 In the case of random coefficients, the Multiplicative
Ergodic Theorem (see Arnold (2003), Colonius and Kliemann (2014),
or Viana (2014)) implies under some general technical assumptions (see Ap-
pendix A for details) that there exists, in our case, two real numbers, called
Lyapunov exponents, λmax and λmin (often called extremal Lyapunov expo-
nents) with ∞ > λmax ≥ λmin > −∞.8 These exponents will be constants
independent of ω ∈ Ω and x ∈ R2 and will be approached as limits:

λmax = lim
t→∞

1

t
log ‖Φ(t, ω)x‖ ≥ λmin = lim

t→∞

1

t
log ‖Φ(t, ω)−1x‖−1.

The Appendix A provides further details and shows alternative character-
izations of the Lyapunov exponents. Moreover, it is shown there how the
Lyapunov exponents and the associated Lyapunov spaces serve as a sub-
stitute for eigenvalues and eigenspaces in the standard constant coefficient
case.

6Compare this to Klein (2000, Definition 4.3 and Assumption 4.2)
7See Colonius and Kliemann (2014, section 1.5).
8In the case of n-dimensional systems there may ` ≤ n distinct Lyapunov exponents.
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2.2 Constant Coefficients

Although the eigenvalues of the “time frozen” coefficient matrices are un-
informative with respect to the stability of the system, it is nevertheless
instructive to investigate the constant coefficient case in detail (see the ref-
erences in footnote 1). Denote for this purpose by A the coefficient matrix
where φπt and φyt take specific values φπ and φy which remain constant over
time. The characteristic polynomial of A, P(µ), with corresponding eigen-
values µ1 and µ2, is then given by

P(µ) = (µ− µ1)(µ− µ2) = µ2 − tr(A)µ+ detA

with

trA = µ1 + µ2 = 1 +
1

β
+

κ

σβ
+ σ−1φy > 2,

detA = µ1µ2 =
1

β
+
κφπ + φy

σβ
> 1,

∆ = (trA)2 − 4 detA =

(
1− 1

β

)2

+
κ

σβ

(
κ

σβ
+ 2 +

2

β
− 4φπ

)
+
φy

βσ

(
βσ−1φy + 2β + 2κσ−1 − 2

)
,

P(1) = (1− µ1)(1− µ2) =
κ

σβ
(φπ − 1) + σ−1(β−1 − 1)φy

where ∆ denotes the discriminant of the quadratic equation P(µ) = 0. Note
that, irrespective of the parameters, A is nonsingular because detA > 1. De-
pending on φπ, the roots of P(µ) may be complex. We therefore distinguish
two cases:

(i) φπ is so large such that ∆ < 0. In this case we have two complex conju-
gate roots. Assuming that κσ−1 > 1− β, a very plausible assumption,
this case can only arise if φπ > 1. Because detA > 1, they are both lo-
cated outside the unit circle.9 The model is determinate and the unique
solution compatible with the boundedness constraint is one where the
initial value x0 is equal to zero so that xt = x

(p)
t .

(ii) φπ is small enough such that ∆ > 0. In this case there are two distinct
real eigenvalues. They must also be of the same sign because the deter-
minant of A is positive. From trA > 2, we infer that they must both be

9Another way to reach this conclusion is by observing that the real part of the roots
is trA

2 > 1.
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positive and that at least one eigenvalue is bigger than one. From the
expression of P(1), we finally conclude that both eigenvalues are bigger
than one if and only if φπ > 1− φy

κ
(1−β). A sufficient condition for this

is that φπ > 1. If this condition holds the model is determinate and
the only initial condition compatible with the boundedness constraint
is again x0 = 0 and xt = x

(p)
t . If the central bank is passive with respect

to inflation, i.e. if φπ < 1− φy

κ
(1− β), the model is indeterminate.

The results of this discussion are summarized in the bifurcation diagram
drawn in Figure 1 which plots the Lyapunov exponents as a function of φπ

for alternative values of φy.10 Consider first the (standard) case where the
central bank does not react to output (blue line), i.e. where φy = 0. In this
situation the stability of the model is independent of the parameters β, κ, and
σ and depends solely on the value of φπ. Starting with φπ = 0 and moving
progressively to a more aggressive central bank, we first obtain two distinct
Lyapunov exponents opposite of zero. Thus, the model is indeterminate. As
φπ gradually increases, the distance between the two Lyapunov exponents
shrinks. When φπ becomes greater than one, the lower Lyapunov exponent
λmin becomes positive and the model determinate. Increasing φπ further,
the discriminant ∆ becomes negative and the eigenvalues complex conjugate.
Hence, the two Lyapunov exponents collapse to a single one. However, the
model remains determinate. If the central bank also reacts to output, i.e.
if φy > 0, the behavior of the model remains qualitatively the same. The
differences being that the value of φπ at which the model switches from an
indeterminate one to a determinate one is now lower than one and that the
value at which the two Lyapunov exponents collapse is larger.11

Finally, we derive explicit solution formulas for the boundary value prob-
lem consisting of the expectational difference equation (2.1) and the bound-
edness constraint. To do so, we make the following additional assumption.

Assumption 2 (Hyperbolicity: Constant Coefficients). A has no eigenvalue
on the unit circle. A matrix with this property is called hyperbolic.

From the previous discussion, we deduce that the hyperbolicity of A is equiv-
alent to the assumption φπ 6= 1− φy

κ
(1−β). Consider first the case where the

model is determinate. This is equivalent to the assumption that the moduli of
both eigenvalues of A are bigger than one, or equivalently that the Lyapunov
exponents are positive. Then, the unique nonexplosive (bounded) solution
of the linear equation (2.2) is the zero solution which is obtained by setting

10Remember that in the case of a constant coefficient matrix, the Lyapunov exponents
are just the logarithms of the distinct moduli |µk| of the eigenvalues µk of A.

11This second statement assumes κσ−1 > 1− β.
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Figure 1: Lyapunov exponents as a function of φπ for different values of φy

(β = 0.99, κ = 0.132, σ = 1)
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x0 equal to zero. A particular solution of the affine difference equation (2.1)
then is

xt = x
(p)
t = −

∞∑
j=1

A−jEtbt+j−1 =
∞∑
j=1

A−jGEtut+j−1. (2.4)

This expression is well-defined if the hyperbolicity assumption 2 holds.
Consider next the case of indeterminacy. In this case there are two posi-

tive real and distinct eigenvalues opposite of one. Denote these two eigenval-
ues by µmax and µmin and their associated eigenvectors by amax and amin. Let
Pmax and Pmin be the projections onto N(A− µmaxI2) along R(A− µmaxI2)
and onto N(A−µminI2) along R(A−µminI2), respectively, where N and R de-
note the nullspace and the column space. These projections can be expressed
in terms of matrices as (see Meyer, 2000, chapter 7.2)

Pmax =
(
amax amin

)(1 0
0 0

)(
amax amin

)−1

Pmin =
(
amax amin

)(0 0
0 1

)(
amax amin

)−1
.

Note that we have Pmax + Pmin = I2. With this notation, we can represent
all bounded solutions in the indeterminate case as

xt = x
(g)
t + x

(p)
t

= Atx0 +
∞∑
j=0

AjPminbt−j−1 −
∞∑
j=1

A−jPmaxEtbt+j−1

= Atx0 −
∞∑
j=0

AjPminGut−j−1 +
∞∑
j=1

A−jPmax(GEtut+j−1) (2.5)

with x0 ∈ span(amin). Note that x0 is characterized by x0 = Pminx0. Be-
cause Pmax and Pmin project on span(amax) and span(amin), respectively,
the expression above is well-defined if the hyperbolicity assumption 2 holds.
Moreover, we see that the indeterminacy is parameterized by span(amin).
The dimension of span(amin) is one because there is always one eigenvalue
bigger than one implying dim span(amax) = 1.

2.3 Random Coefficients

2.3.1 Solution Formulas

We now turn the main contribution of this paper and consider the case where
the coefficient matrix At is no longer constant, but, due to the randomness
of φπ and, eventually φy, is varying over time. It is well-known that in such
a situation the analysis of the eigenvalues of the “time frozen” coefficient10



matrices is no longer informative about the stability of the model. It may
be the case that the model is unstable although the moduli of the eigenval-
ues of each At considered on its own are less than one (see the references in
footnote 1). Fortunately, the Lyapunov exponents defined in equation (2.3)
provide a perfect substitute as shown by Oseledets’ acclaimed Multiplicative
Ergodic Theorem (MET). Appendix A provides a precise statement of the
theorem and additional details. One implication of the MET is that, de-
spite the randomness, the Lyapunov exponents are fixed number which are
approached as a limit.

In the context of the New Keynesian model the lemma below shows that
there is always one positive Lyapunov exponent.

Lemma 1. The maximal Lyapunov exponent is always strictly greater than
zero, i.e. λmax > 0.

Proof. Denote by δmax(Φ(t, ω)) and δmin(Φ(t, ω)) the two singular values of
Φ(t, ω), then the last assertion of the MET (see appendix) implies

λmax + λmin = lim
t→∞

1

t
log δmax(Φ(t, ω)) + lim

t→∞

1

t
log δmin(Φ(t, ω))

= lim
t→∞

1

t
log (δmax(Φ(t, ω))δmin(Φ(t, ω)))

= lim
t→∞

1

t
log | det Φ(t, ω)| = lim

t→∞

1

t

t∑
j=0

log | detA(θjω)|

= E log | detA(ω)|.

The last equality follows from the Birkoff’s ergodic theorem (see, for example,
Silva, 2008, theorem 5.1.1). Because detA = 1/β + (κφπ + φy)/(σβ) > 1/β > 1,
irrespective of the realized values of φπ and φy, λmax + λmin > 0. Hence,
λmax > 0 as claimed.

From this lemma we immediately deduce the following two consequences:

(i) The New Keynesian model is determinate if and only if both Lyapunov
exponents are strictly greater than zero. In this case the only bounded
solution of the linear difference equation (2.2) is the zero solution which
is obtained by setting x0 = 0.

(ii) The New Keynesian model is indeterminate if and only if λmin < 0.
In this case there is an infinite number of initial values x ∈ Lλmin(ω)
such that ϕ(t, ω, x) = Φ(t, ω)x converges (exponentially fast) to zero.
Hence, ϕ(t, ω, x) = Φ(t, ω)x is a bounded solution satisfying the linear
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difference equation (2.2). The linear space Lλmin(ω) depends on the
realization ω and is therefore stochastic, but has constant dimension
one. It is called the Lyapunov space associated with λmin.

As in the constant coefficient case, we devise explicit solution formulas for the
two cases. This requires, as before, the hyperbolicity of the New Keynesian
model viewed as a random dynamical system.

Assumption 3 (Hyperbolicity: Stochastic Case). Φ(t, ω) is hyperbolic, i.e.
all Lyapunov exponents are different from zero.

We are now in a position to deduce from Arnold (2003, corollary 5.6.6)
and Arnold (2003, theorem 5.6.5) directly the solution formula for each
case.

Proposition 1 (Solution: Determinateness). Under the assumptions of the
MET, the integrability condition 1 for ut, and the hyperbolicity assumption 3,
the New Keynesian model is determinate if and only if λmin > 0. The unique
invariant solution is

xt = −Φ(t) Et

[
∞∑
j=1

Φ(t+ j)−1bt+j−1

]

= Φ(t) Et

[
∞∑
j=1

Φ(t+ j)−1(Gut+j−1)

]
. (2.6)

Proposition 2 (Solution: Indeterminateness). Under the assumptions of the
MET, the integrability condition 1 for ut, and the hyperbolicity assumption 3,
the New Keynesian model is indeterminate if and only if λmin < 0. The set
of invariant solutions is given by

xt = Φ(t)x0 + Φ(t)
∞∑
j=0

Φ(t− j)−1 Pmint−j bt−j−1

− Φ(t) Et

[
∞∑
j=1

Φ(t+ j)−1 Pmaxt+j bt+j−1

]

= Φ(t)x0 − Φ(t)
∞∑
j=0

Φ(t− j)−1 Pmint−j Gut−j−1

+ Φ(t) Et

[
∞∑
j=1

Φ(t+ j)−1 Pmaxt+j Gut+j−1

]
(2.7)

where x0(ω) ∈ Lλmin(ω). Pmaxt+j and Pmint−j are the projections onto Lλmax(θ
t+jω)

along Lλmin(θt+jω), respectively onto Lλmin(θt−jω) along Lλmax(θ
t−jω).
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The major difference to the constant coefficient case is that the Lyapunov
spaces Lmax(ω) and Lmin(ω) which serve as a substitute for the eigenspaces
are time-varying and dependent on the realization of the stochastic process
governing the randomness of A. This implies the corresponding projections
have also to be random. This stands in contrast to the Lyapunov exponents
which are fixed numbers.

The solution formulas above clearly show the attractiveness of the ap-
proach based on the MET. The Lyapunov spectrum (the set of Lyapunov
exponents) and the associated Lyapunov spaces encode all the knowledge
necessary for the understanding of the dynamic properties of the model. As
shown by the two propositions above, they reveal much more information
than just about the stability of the system. Compare this to Francq and
Zaköıan (2001), Davig and Leeper (2007), or Farmer, Waggoner, and
Zha (2009) who investigate the stability of their model by analyzing the
spectral radius of a certain matrix. They effectively focus only on the top
Lyapunov exponent (the largest Lyapunov exponent). Moreover, the solu-
tion formulas above make sense intuitively and conform with the standard
constant coefficient case. Hence the technique exemplified here represents a
natural extension of the standard procedures outlined in Blanchard and
Kahn (1980), Klein (2000), and Sims (2001).

2.3.2 Specification of Randomness

In order to apply these results, we have to be concrete and specify the stochas-
tic process governing the randomness of At in detail. In particular, we assume
that At is drawn randomly from a finite set {A(φπi ) | i = 1, 2, . . . , n)} where
A(φπi ) denotes the matrix A with value φπ = φπi . φy is assumed to be con-
stant across states. Furthermore, the randomness is governed by a regular
(irreducible (ergodic) and aperiodic) stationary Markov chain with n states
and transition probabilities (P )ij, i, j = 1, 2, . . . , n. For simplicity, we assume
n = 2 so that the transition matrix P can be written as

P =

(
1− p p
q 1− q

)
.

Thus (P )ij = P[At+1 = A(φπj ) | At = A(φπi )]. If p, q ∈ (0, 1), the chain is

regular with invariant distribution δ =
(

q
p+q

, p
p+q

)
. Thus, δ is the unique

distribution which satisfies δP = δ. Hence, the chain is on average in q/(p+ q)

percent of the time in state one and p/(p+ q) percent of the time in state
two. Although the dependency of the Lyapunov exponents on the underly-
ing stochastic process is a subtle issue and still unresolved in general, Mal-
heiro and Viana (2015) have shown that in the specification considered
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here the Lyapunov exponents depend continuously on the coefficients of the
transition matrix. This makes the following simulation exercise a meaningful
undertaking.

Noting that the mean exit time from state i is 1/(1 − (P )ii), we mea-
sure the mobility of the chain by the mobility index M(P ) which has been
proposed by Shorrocks (1978):

M(P ) =
n− trP

n− 1
.

M(P ) is nothing but the reciprocal of the harmonic mean of the mean exit
times.12 In the specification above M(P ) = p + q. Thus, the amount of
mobility is maximized if the chain switches deterministically (i.e. if p = q = 1)
between the two states13 and minimized if the chain stays in its initial state
(i.e. if p = q = 0).

3 Simulation Results

There is a large number of dimensions along which the model can be simu-
lated. In the following we report those of which we hope will be the most
interesting ones for the reader. We consider the specification φπ1 = 0 versus
φπ2 > 0 with φy = 0 in both states:

A(0) =

(
1 + κ/βσ − 1/βσ
− κ/β 1/β

)
, A(φπ2 ) =

(
1 + κ/βσ (φπβ − 1)/βσ
− κ/β 1/β

)
.

In state one where φπ1 = 0 the central does not react to inflation at all. When
this is the case, the nominal interest rate becomes exogenous. This situation
arises when central banks base their policy on an explicit inflation forecast
taking the interest rate path as given. According to Gaĺı (2011) this is or
has been a common practice in many central banks. This specification re-
sults in an indeterminate model in the constant coefficient case. See Gaĺı
(2011) for an economic interpretation and possible remedies. In particular,
Galĺı discusses the possibility of switching back to an inflation sensitive cen-
tral bank policy after some given and fixed horizon (see also Laséen and
Svensson, 2011, for a similar analysis).

12Shorrocks (1978) provides an axiomatic foundation for this index.
13The case of periodically switching coefficients results in models which can be analyzed

in the context of Floquet’s theory. See Elaydi (2005, section 3.4) and Colonius and
Kliemann (2014, section 7.1) for excellent expositions. An application of this theory to
the model under scrutiny here is provided in Neusser (2017).
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In state two At = A(φπ2 ) with φπ2 > 0. Hence, there is a response of the
central bank to inflation. This response must be larger than one to obtain
a determinate model in the constant coefficient case. In both states, there
is no feedback by the central bank to output, i.e. φy = 0. The remaining
parameters are κ = 0.132, σ = 1, and β = 0.99 which correspond to those in
Farmer, Waggoner, and Zha (2009).

Although the Lyapunov exponents play a similar role as the eigenvalues do
in the constant coefficient case, they cannot, in general, be found analytically.
Instead, they can be approximated numerically by simulations. The challenge
is that ϕ(t, ω, x) = Φ(t, ω)x tends to align in the direction of fastest growth
very quickly leading to a numerical overflow on any computer. To avoid this
difficulty, we use the product QR algorithm as discussed in Dieci and Elia
(2008).14

First, we investigate the implications of randomness. For this purpose,
we set p = q which implies a symmetric transition matrix. The chain is
then on average half of time in state one and half of the time in state two.
We let p = q increase gradually from 1/8 to 7/8 in steps of 1/8. Thereby the
mobility of the chain increases according to Shorrocks’ index from 0.25 to
1.75. If p = q = 1/2, the Markov chain has no memory and the resulting
sequence is i.i.d. We are especially interested in the value of φπ2 at which the
model switches from being indeterminate to determinate. This will be the
case when the minimal Lyapunov exponent λmin crosses the zero line. The
corresponding value of φπ2 is denoted by (φπ2 )∗.

Comparing the bifurcation diagrams in Figures 1 and 2, one can see that
the stability properties of the model remain qualitatively similar. For low
values of φπ2 , the model has two Lyapunov exponents opposite of zero indicat-
ing indeterminacy. As the central bank becomes more and more aggressive
in combating inflation in state 2, i.e. as φπ2 increases, the two Lyapunov expo-
nents approach each other and the minimal Lyapunov exponent λmin crosses
the zero line so that the model becomes determinate. The value at which
this happens depends on p = q. As the chain becomes more persistent (low
values of p = q) the aggressiveness of the central bank in state two must
increase. When p = q = 0.25 which corresponds to a mean exit time of
four periods, the value of φπ2 must be at least 3.78 (see also the first part
of panel (a) in Table 1) to obtain a determinate model. Note that although
the two Lyapunov exponents approach each other as φπ2 increases, they seem
to collapse only for high values of p = q, i.e. for a highly persistent chain.
Note that when p = q becomes low leading to a persistent chain, the line

14For further details see Froyland et al. (2013) and Neusser (2017). In particular,
we use 107 iterations and a tolerance level of 10−6.
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Figure 2: Switching values: The role of Randomness

showing λmin as a function of ππ2 becomes very flat. This implies that the
aggressiveness of central bank must become very high and that the precision
of the estimate (φπ2 )∗ decreases.

In the next simulation exercise, we fix p at 0.25 and change q gradually in
steps of 1/8 from 1/8 to 7/8. This increases the volatility of the chain according
to Shorrocks’ index. However, in contrast to the previous simulation, the
average percentage time spent in state two (active central bank) is thereby
successively reduced from 0.666 to 0.222 percent. The details of this spec-
ification with the corresponding results are summarized in the second part
of panel (a) in Table 1. As expected, the aggressiveness of the central bank
must increase strongly to compensated for the lower mean exit time from
state two (which is equal to 1/q). Note that, as before, the precision of the
estimate of (φπ2 )∗ tend to decrease as q gets large because λmin viewed as a
function of φπ2 becomes very flat.

In a next step, we examine how these results are affected when the cen-
tral reacts to output in both states. This means that the interest rate is
endogenous irrespective in which state the economy is in. The corresponding
results for φy = 1.0 are presented in panel (b) of Table 1. A comparison with
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Table 1: Minimal Lyapunov Exponents: The Role of Randomness

panel (a): φy = 0

p 0.125 0.250 0.375 0.500 0.625 0.750 0.875
q 0.125 0.250 0.375 0.500 0.625 0.750 0.875
p/p+ q 0.500 0.500 0.500 0.500 0.500 0.500 0.500
M(P ) 0.250 0.500 0.750 1.000 1.250 1.500 1.750
(φπ2 )∗ 6.12 3.78 2.71 2.27 2.11 2.05 2.02

p 0.250 0.250 0.250 0.250 0.250 0.250 0.250
q 0.125 0.250 0.375 0.500 0.625 0.750 0.875
p/p+ q 0.666 0.500 0.400 0.333 0.286 0.250 0.222
M(P ) 0.375 0.500 0.625 0.750 0.875 1.000 1.125
(φπ2 )∗ 1.84 3.76 7.09 8.08 8.26 8.10 8.15

panel (b): φy = 1

p 0.125 0.250 0.375 0.500 0.625 0.750 0.875
q 0.125 0.250 0.375 0.500 0.625 0.750 0.875
p/p+ q 0.500 0.500 0.500 0.500 0.500 0.500 0.500
M(P ) 0.250 0.500 0.750 1.000 1.250 1.500 1.750
(φπ2 )∗ 1.82 1.82 1.82 1.85 1.87 1.87 1.88

p 0.250 0.250 0.250 0.250 0.250 0.250 0.250
q 0.125 0.250 0.375 0.500 0.625 0.750 0.875
p/p+ q 0.666 0.500 0.400 0.333 0.286 0.250 0.222
M(P ) 0.375 0.500 0.625 0.750 0.875 1.000 1.125
(φπ2 )∗ 1.37 1.82 2.27 2.74 3.20 3.72 4.21

At (φπ2 )∗ the minimal Lyapunov exponent crosses the zero line.

panel (a) reveals that the aggressiveness of the central bank can now be much
lower to achieve a determinate model. In the symmetric case, take f.e. the
specification p = q = 1/2. Then the value of φπ at which the model switches
from being indeterminate to determinate is reduced from 2.27 to 1.85. This
reduction is much more dramatic in the asymmetric case. If p = 1/4 and
q = 5/8, the value (φπ)∗ is reduced from 8.26 to 3.20. Thus, the response of
the central bank to output has much more effect in the random environment
compared to the deterministic one.
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4 Conclusion

This paper documented how the Lyapunov exponents can be used to analyze
the stability of affine (linear) rational expectations models with time-varying
(random) coefficients. In the context of a prototype New Keynesian model
the issue of a randomized Taylor rule is analyzed. It is shown how this
feature affects the determinateness of the model. In particular, the central
bank can compensate periods of a passive policy against inflation by being
more aggressive in periods of an active policy. The methods proposed in
this paper allow to delineate clearly this trade-off both theoretically as well
empirically. Moreover, solution formulas for the determinate as well as the
indeterminate case are derived.

The methods outlined in this paper can be readily generalized to analyze
models where the randomness of the coefficients are governed by more so-
phisticated stochastic processes: Markov chains with more than two states
or covariance stationary processes. Another interesting generalization relates
to the analysis of models with initial conditions. In the context of the New
Keynesian model this can be achieved by allowing some inertia in the Phillips
curve. The stability of such models could be analyzed in a similar manner.
However, a more in depth analysis would require not only to estimate the
Lyapunov exponents, but also the Lyapunov spaces. This task is more in-
volved, but numerical algorithms are readily available (Froyland et al.,
2013) also for this issue.

As pointed out by Foerster et al. (2016), the approach outlined sofar
potentially suffers from two deficiencies. First, the randomness is attached
to certain parameters after the linearization of the model. This results in
a model which can be seen as being incompatible with the idea that agents
take the randomness of certain parameters (policies) already into account
in their optimization problem. Against this argument one may object that
this view, pushed to the extreme, would make it impossible to investigate
any policy changes. Hence, the idea of time-varying coefficients seems to be
a reasonable presumption. Second, because of its linearity (i.e. first order
approximation), the model fails to adequately represent the effects of time-
varying volatility. However, it must be emphasized that the MET can be
generalized, at the price of some mathematical sophistication, to nonlinear
continuously differentiable random dynamical systems. In this setup and as-
suming hyperbolicity, Arnold (2003, chapter 7) derived Hartman-Grobman
type theorems (Linearization Theorems) which justify the use of linearized
systems to infer the qualitative behavior of the original nonlinear system.15

15For deterministic systems see f.e. Robinson (1999).
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Thus, a complete machinery is ready to analyze rational expectations models
with random coefficients and thereby to generate new insights.
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A Random Dynamical Systems

The purpose of this appendix is to give a precise statement of Oseledets’
Multiplicative Ergodic Theorem (MET) which is the theoretical basis for this
paper. The presentation draws heavily on Colonius and Kliemann (2014).
Other excellent presentations can be found in the monographs by Arnold
(2003) and Viana (2014). For a probability space (Ω,F,P), we consider
a measurable map θ : Z × Ω → Ω with the properties θ(0, ω) = idΩ and
θ(t+s, ω) = θ(t, θ(s, ω)) for all t, s ∈ Z and ω ∈ Ω. The latter feature is often
called the cocycle property. θ with these properties is called a (measurable)
dynamical system. The cocycle property together with two-sided time Z
implies that θ(., ω) is invertible. Moreover, as θ(t, ω) is generated by θ(1, ω),
i.e. θ(t, ω) = θ(1, ω)t, we write θtω for θ(t, ω) for conciseness. Moreover, we
assume that θ is invariant under P, i.e. θ(t, F )P = P(F ) for all F ∈ F, and
that P is ergodic with respect to θ.

The conditional expectations are defined as Etxt+j = E[xt+j | Ft], j ≥
1, where Ft = σ{(xs, As, bs) : s ≤ t}, the smallest σ-algebra such that
(xs, As, bs) is measurable for all s ≤ t. The sequence of σ-algebras {Ft}
so-defined is a filtration adapted to {xt} and {(At, bt)} with Ft ⊆ F =
σ(
⋃
t∈Z Ft).

In the context of our simulation exercise randomness is governed by a
discrete time finite state regular (ergodic and aperiodic) Markov chain defined
by a transition matrix P . Hence, Ω = {1, 2, . . . , n}Z where n denotes the
number of states. θ : Ω → Ω is the shift operator and P the associated
Markov measure on Ω. As the transition matrix P is irreducible (ergodic),
P is ergodic and invariant with respect to θ. Thus, the assumptions made
above are fulfilled.

Consider the nonautonomous linear difference equation with xt ∈ Rd for
all t ∈ Z:

xt+1 = A(θtω)xt, t ∈ Z,
where A : Ω → GL(d) is measurable and where GL(d) denotes the general
linear group of order d (the set of invertible d × d matrices). The solutions
paths starting with x0 = x are denoted by ϕ(t, ω, x) and are given by

ϕ(t, ω, x) = Φ(t, ω)x = A(θt−1ω) . . . A(ω)x.

In the main text, we omit, if possible, the dependence on ω in order not
to overload the notation and write At for A(θtω). The Lyapunov exponents
λ(ω, x) are then defined as

λ(ω, x) = lim sup
t→∞

1

t
log ‖ϕ(t, ω, x)‖.
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With these preliminaries we are now in a position to state the MET as
in Colonius and Kliemann (2014, section 11.1).

Theorem (Multiplicative Ergodic Theorem (MET)). Let θ be a dynami-
cal system with the properties stated above and assume that the integrability
condition

E log+ ‖A‖ and E log+ ‖A−1‖ <∞

holds. Then the following assertions follow:

(i) There is a decomposition (splitting)

R
d = L1(ω)⊕ · · · ⊕ L`(ω)

of Rd into ` ≤ d random linear subspaces Lj(ω). These subspaces are
not constant, but depend measurably on ω. However, their dimensions
remain constant and equal to dj. The spaces Lj(ω) are called Lyapunov
or Oseledets spaces.

(ii) The Lyapunov spaces are equivariant, i.e. A(ω)Lj(ω) = Lj(θω).

(iii) There are real numbers ∞ > λ1 > · · · > λ` ≥ −∞ such that for each
x ∈ Rn \ {0} the Lyapunov exponent λ(ω, x) ∈ {λ1, . . . , λ`} exists as a
limit and

λ(ω, x) = lim
t→±∞

1

t
log ‖ϕ(t, ω, x)‖ = λj if and only if x ∈ Lj(ω) \ {0}.

(iv) The limit

Υ(ω) = lim
t→∞

(Φ(t, ω)′Φ(t, ω))
1/2t

(A.1)

exists as a positive definite matrix. The different eigenvalues of Υ(ω)
are constants and can be written as exp(λ1) > · · · > exp(λ`); the cor-
responding random eigenspaces are L1(ω), . . . , L`(ω).

(v) The Lyapunov exponents are obtained as limits from the singular values
δk of Φ(t, ω): The set of indices {1, 2, . . . , d} can be decomposed into
subsets Sj, j = 1, . . . , `, such that for all k ∈ Sj,

λj = lim
t→∞

1

t
log δk(Φ(t, ω)).

All these assertions hold on some full P-measure.
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Gaĺı, Jordi (2011), “Are central banks’ projections meaningful?”, Journal
of Monetary Economics, 58, 537–550.

Grimmett, Geoffrey and David Stirzaker (2001), Probability and
Random Processes, 3rd edn., Oxford University Press.

Klein, Paul (2000), “Using the generalized Schur form to solve a multivari-
ate linear rational expectations model”, Journal of Economic Dynamics
and Control, 24, 1405–1423.

Koenig, Evan F., Robert Leeson, and George A. Kahn (eds.) (2012),
Transformation of Monetary Policy, Stanford: Hoover Institute Press.
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