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Abstract

We consider integrated modified ordinary and generalized least squares estimation

for systems of cointegrating multivariate polynomial regressions, i. e., systems of re-

gressions that include deterministic variables, integrated processes and products of

non-negative integer powers of these variables as regressors. The stationary errors

are allowed to be correlated across equations, over time and with the regressors.

The necessity to consider integrated modified generalized least squares estimation

arises in case of estimation under restrictions, which in general implies that ordinary

and generalized least squares estimators cease to be identical. We discuss in detail

hypothesis testing for the unrestricted and restricted estimators. Furthermore, we

develop asymptotically pivotal fixed-b inference, which is shown to be available only

in the case of full design for up-to-the-intercept-identical hypotheses tested in all

equations in systems with identical regressors in all equations.

JEL Classification: C12, C13, C32

Keywords: Integrated Modified Estimation, Cointegrating Multivariate Polyno-

mial Regression, Fixed-b Inference, Generalized Least Squares
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Povzetek

Obravnavamo integrirano modificirano navadno in posplošeno ocenjevanje najmanǰsih

kvadratov za sisteme kointegrirajočih multivariatnih polinomskih regresij, tj. sisteme

regresij, ki kot regresorje vključujejo deterministične spremenljivke, integrirane pro-

cese in produkte nenegativnih celoštevilskih moči teh spremenljivk. Dovoljeno je, da

so stacionarne napake korelirane med enačbami, skozi čas in z regresorji. Potreba

po upoštevanju integriranega modificiranega posplošenega ocenjevanja po metodi naj-

manǰsih kvadratov se pojavi v primeru ocenjevanja z omejitvami, kar na splošno pomeni,

da običajne in posplošene cenilke po metodi najmanǰsih kvadratov niso več identične.

Podrobno obravnavamo testiranje hipotez za neomejene in omejene cenilke. Poleg tega

razvijamo asimptotično pivotalno inferenco s fiksno-b, ki je na voljo le v primeru popol-

nega načrta za hipoteze, identične do prestreznega člena, testirane v vseh enačbah v

sistemih z enakimi regresorji v vseh enačbah.
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1 Introduction

This paper considers integrated modified (IM) least squares estimation – both OLS

and GLS – for systems of cointegrating multivariate polynomial regressions (SCMPRs).

These are systems of regressions that include deterministic variables, integrated processes

and products of (non-negative) integer powers of these variables as regressors. The error

terms, assumed to be jointly stationary across equations, are allowed to be correlated

– both serially and across equations – and the stochastic regressors are allowed to be

endogenous. Thus, the paper extends the analysis of univariate cointegrating multivari-

ate polynomial regressions (CMPRs) of Vogelsang and Wagner (2024) to the systems

setting.1

Integrated modified ordinary least squares (IM-OLS) estimation, introduced for cointe-

grating linear regressions in Vogelsang and Wagner (2014), has several key advantages

compared to other modified least squares estimators used in cointegrating regression

analysis: First, estimation is tuning-parameter-free. IM-OLS requires the estimation

of a conditional long-run covariance matrix for inference only. Second, IM estimation

allows performing fixed-b inference in cointegrating regressions (see Vogelsang and Wag-

ner, 2014, Section 5). Fixed-b inference is designed to capture the impact of kernel and

bandwidth choices, required for estimating the above-mentioned conditional long-run

covariance matrix, on the sampling distributions of test statistics.2 Third, and this is a

very important conceptual advantage, IM estimation can be extended straightforwardly

to allow for the inclusion not only of powers of integrated processes as regressors (the

CPR case), but also of arbitrary non-negative integer products of integrated processes

as regressors.3

1This paper fulfills a similar (but more encompassing) extension-to-systems-of-equations role as Wagner
(2023) fulfills for Wagner and Hong (2016). These two earlier papers – discussing fully modified least
squares estimation – only consider (systems of) cointegrating polynomial regressions (CPRs), in which
cross-products (of non-negative integer powers) of integrated processes are not included as regressors.
Note that Wagner (2023) contains a typo in the definition of M̂+ below equation (7). The u and v
subscripts in the ∆̂-terms in the definition of M̂u need to be switched, e. g., in the i-th row ∆̂uivj

needs to be replaced by ∆̂vjui for j = 1, . . . ,m. The sentence should then continue with: “and M̂v

defined analogously, with ∆̂vjui , i = 1, . . . , n, j = 1, . . . ,m replaced by ∆̂vjvi , i, j = 1, . . . ,m.”
2Fixed-b analysis of spectral estimators has been introduced by Neave (1970). It has been developed
into an alternative framework for (robust) inference for stationary regressions in Kiefer and Vogelsang
(2005).

3Note that this overcomes, admittedly only for the case of multivariate polynomials, the additive se-
parability between integrated regressors that is most often assumed in the nonlinear cointegration
literature. For a more encompassing discussion of this aspect see Vogelsang and Wagner (2024,
Section 1).
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One important (economic) application of CMPRs, i. e., of regressions involving cross-

products of integrated regressors, are so-called Translog functions, see, e. g., Christensen

et al. (1971) or the example in Remark 1. A second important application is RESET-

type specification testing (originally introduced by Ramsey, 1969) of cointegrating (mul-

tivariate polynomial) regressions using the version of Thursby and Schmidt (1977), where

(non-negative integer) powers and cross-products of powers of the regressors in the orig-

inal regression are included in an augmented test regression. See the discussion in

Vogelsang and Wagner (2024, Sections 2.4 and 3) for the single-equation case.4

Considering systems of equations, useful to, e. g., analyze Translog cost or production

function systems with several outputs, adds some further aspects compared to the single-

equation setting discussed in Vogelsang and Wagner (2024). First, see also the cor-

responding discussion in Wagner (2023), systems of equations necessitate a detailed

consideration of generalized least squares estimators, in this paper integrated modified

generalized least squares (IM-GLS). This stems from the well-known fact that OLS-

and GLS-type estimators coincide in general only (for any positive definite symmetric

weighting matrix) in systems with identical regressors in all equations and without pa-

rameter constraints. Second, the scope of fixed-b inference needs to be investigated in

more detail than in the single-equation case. It turns out that – in addition to full design,

required also in Vogelsang and Wagner (2024) – fixed-b inference is only available for

up-to-the-intercept-identical hypotheses tested in all equations in systems with identical

regressors in all equations. Whilst this is, of course, restrictive it includes, e. g., fixed-b

RESET-type specification testing for systems of equations with identical regressors in

all equations under both the null specification and in the augmented test regression.5

This short paper is organized as follows: Section 2 discusses, organized in four sub-

sections, the setup and assumptions, unrestricted estimation and inference, estimation

and inference under restrictions and fixed-b inference. Section 3 briefly summarizes

and concludes. All proofs are relegated to the appendix. MATLAB code for IM-OLS/GLS

estimation and inference, including fixed-b inference – which necessitates (the generation

of) specification-dependent critical values (that additionally depend upon kernel function

and bandwidth) – is available upon request.

4Note that, as already discussed in Wagner and Hong (2016, Section 2.3) and Vogelsang and Wagner
(2024, Section 2.4) additional integrated regressors (and their non-negative integer powers and cross-
products) can be included in the augmented test regression.

5The limited scope of fixed-b inference implies that there is no need to consider fixed-b inference for IM-
GLS estimators, since IM-OLS and IM-GLS coincide in settings where fixed-b inference is available.
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2 Theory

2.1 Setup and Assumptions

We start with considering unrestricted systems of cointegrating multivariate polynomial

regressions (SCMPRs) where all equations include the same set of regressors:

yt = ΘZt + ut, t = 1, . . . , T, (1)

xt = xt−1 + vt,

with yt := (y1t, . . . , ynt)
′, Zt := (z1t, . . . , z|I|t)

′, with zit = ti0xi11t · · ·x
im
mt for i = 1, . . . , |I|

and ij non-negative integers for j = 0, . . . ,m, Θ = [θh,i]h=1,...,n,i∈I ∈ Rn×|I| and xt :=

(x1t, . . . , xmt)
′. The regressors zit, i = 1, . . . , |I| are ordered, e. g., by lexicographic

ordering of the multi-indices i := (i0, . . . , im) from a multi-index set I indexing all

regressors. To avoid perfect multi-collinearity by construction, we assume that no multi-

index i is contained more than once in I.

The results in this paper can be established under the same assumptions, adapted

to multivariate yt, as used in, e. g., Vogelsang and Wagner (2024, Footnote 10) and

we, therefore, abstain from positing a detailed set of assumptions. As is common in

the cointegrating regression literature, we also exclude cointegration amongst the m

integrated regressors {xt}t∈Z as well as multi-cointegration in the system. Defining

{ηt}t∈Z := {(u′t, v′t)′}t∈Z, a functional central limit theorem holds:

T−1/2

⌊rT ⌋∑
t=1

ηt ⇒ B(r) =

(
Bu(r)

Bv(r)

)
= Ω1/2W (r), (2)

for 0 ≤ r ≤ 1, with W (r) denoting (n+m)-dimensional standard Brownian motion and

by assumption positive definite long-run covariance matrix:

Ω =

(
Ωuu Ωuv

Ωvu Ωvv

)
:=

∞∑
j=−∞

E(ηt−jη
′
t), (3)

partitioned conformably with ηt. When Ωuv ̸= 0, the regressors are endogenous and

the setting also allows for relatively unrestricted forms of serial correlation of the errors

{ηt}t∈Z. Using, e. g., the Cholesky decomposition of Ωvv = Ω
1/2
vv (Ω

1/2
vv )′, one can write (2)

more specifically as:
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(
Bu(r)

Bv(r)

)
:=

(
Ω
1/2
u·v Ωuv(Ω

−1/2
vv )′

0 Ω
1/2
vv

)(
Wu·v(r)

Wv(r)

)
, (4)

with Ωu·v := Ωuu−ΩuvΩ
−1
vv Ωvu the (innovation) covariance matrix of Bu·v(r) := Bu(r)−

ΩuvΩ
−1
vv Bv(r).

6

Remark 1. To exemplify the setting and notation, consider the following simple example

(with n = m = 2) of a two-output firm – with output “proper” Yt and (unwanted output)

emissions Et – using a Translog production function with the two input factors capital

Kt and labor Lt.
7 Including additionally (equation-specific) intercepts leads to:

lnYt = θ1,(0,0,0) + θ1,(0,1,0) lnKt + θ1,(0,0,1) lnLt + θ1,(0,2,0)(lnKt)
2

+ θ1,(0,0,2)(lnLt)
2 + θ1,(0,1,1) lnKt lnLt + u1t,

lnEt = θ2,(0,0,0) + θ2,(0,1,0) lnKt + θ2,(0,0,1) lnLt + θ2,(0,2,0)(lnKt)
2

+ θ2,(0,0,2)(lnLt)
2 + θ2,(0,1,1) lnKt lnLt + u2t,

with the coefficients double-indexed by first the equation index h = 1, 2 and second

the multi-index i = (i0, i1, i2) ∈ I corresponding to regressor zit = ti0(lnKt)
i1(lnLt)

i2

with I = {(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 2, 0), (0, 0, 2), (0, 1, 1)} and |I| = 6. In matrix

notation, the above system can be written more compactly as in (1):

6Reduced rank of Ωu·v corresponds to multi-cointegration, excluded in this paper due to the assumption
that Ω is positive definite.

7When considering emissions as one of the outputs, it is usual to also include energy as production factor.
We abstain from including additional production factors as well as a measure of the technology level
merely for algebraic brevity. In some applications, the inputs are disaggregated into five input factors:
capital, labor, energy, materials and services, labelled as KLEMS. For the 27 member countries of
the European Union, the EU-KLEMS project provides corresponding annual data over the period
1995–2020 for 23 industries. The short sample period makes this data set potentially unsuitable
for cointegration analysis (of the long-run behavior), but this question will be investigated in detail
elsewhere.
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[
lnYt

lnEt

]
︸ ︷︷ ︸

=yt

=

[
θ1,(0,0,0) θ1,(0,1,0) θ1,(0,0,1) θ1,(0,2,0) θ1,(0,0,2) θ1,(0,1,1)

θ2,(0,0,0) θ2,(0,1,0) θ2,(0,0,1) θ2,(0,2,0) θ2,(0,0,2) θ2,(0,1,1)

]
︸ ︷︷ ︸

=Θ



1

lnKt

lnLt

(lnKt)
2

(lnLt)
2

lnKt lnLt


︸ ︷︷ ︸

=Zt

+

[
u1t

u2t

]
︸ ︷︷ ︸

=ut

,

[
lnKt

lnLt

]
︸ ︷︷ ︸

=xt

=

[
lnKt−1

lnLt−1

]
︸ ︷︷ ︸

=xt−1

+

[
v1t

v2t

]
︸ ︷︷ ︸

=vt

.

This two-output Translog example thus corresponds to a system without restrictions on

the parameter matrix, since all regressors are included in both equations.

Remark 2. The setting considered in this paper is closely related to the seemingly

unrelated cointegrating polynomial regression (SUCPR) setting considered in Wagner

et al. (2020) and Knorre and Wagner (2024).8 A difference to those papers is the

consideration of cointegrating multivariate polynomial regressions, i. e., the inclusion of

cross-product terms (and that the two papers mentioned both consider fully modified

rather than integrated modified estimation). Given our setting, a system of seemingly

unrelated multivariate cointegrating polynomial regressions would be of the form:

yht = z′htθh + uht, h = 1, . . . , n, (5)

xht = xh,t−1 + vht,

where zht := (zh1t, . . . , zh|Ih|t)
′ with components of the form zhit = ti0xi1h1t · · ·x

imh
hmht

for

h = 1, . . . , n and i = 1, . . . , |Ih|. While in the “classical” seemingly unrelated regressions

(SUR) setting of, e. g., Zellner (1962), no explicit assumptions are posited about the

relationship between the regressors in the different equations, the seemingly unrelated

cointegrating regression literature often assumes that the regressors are disjoint between

the equations, with exceptions being Moon and Perron (2004) for the cointegrating linear

case and Knorre and Wagner (2024) for the cointegrating polynomial case. As Knorre

8See also the discussion in Wagner (2023, Remark 2).
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and Wagner (2024), we refer to common regressors as regressors occurring in at least

two equations.9

The equation system (5) can be rewritten in the form given in (1): Combine all distinct

elements of xht, h = 1, . . . , n into a vector xt ∈ Rm. In the case of no common integrated

regressors, xt := (x′1t, . . . , x
′
nt)

′, with m =
∑n

h=1mh, and in the case that all integrated

regressors are common – as in the example in Remark 1 xt := x1t = · · · = xnt, with

m = m1 = · · · = mn.
10 To define the joint regressor vector combine all distinct elements

of {zhit}h=1,...,n,i=1,...,|Ih| into a vector Zt with elements zit = ti0xi11t · · ·x
im
mt with a corre-

spondingly defined multi-index set I. Clearly, elements of the vector Zt that occur as

regressors only in one or some equations, imply block-zero restrictions in rows of Θ.

Consider as a simple example a system of two countries described by Cobb-Douglas

production functions with again capital Kt and labor Lt as production factors and with

a common technology level At, assumed for simplicity here as observable:11

9Note for completeness that, of course, Zellner (1962) also discusses the case where the regressors are
assumed to be identical across all equations. For this setting he shows the important and widely-
used result that OLS and GLS estimation coincide in the case that there are no restrictions on the
parameters. This result is, as is also well known, e. g., the “basis” for equation-by-equation OLS
estimation of unrestricted vector autoregressive models.

10One key difference between Wagner et al. (2020) and Knorre and Wagner (2024) is that the former
paper excludes common regressors and the latter paper closes that gap. Both papers contain de-
tailed discussions of group-wise pooling, i. e., of groups of coefficients being identical across groups of
equations. This allows testing numerous specification-related hypotheses as well as performing cor-
respondingly restricted estimation. A second difference between the two papers is that Knorre and
Wagner (2024) provide a discussion for the general multiple integrated regressors case, whereas the
discussion in Wagner et al. (2020) considers a more stylized and, thus, algebraically more accessible
setting with only one integrated regressor and its powers per equation.
To complete the discussion, panel cointegrating (polynomial) regression settings are also closely re-
lated, see, e. g., de Jong and Wagner (2022) for pooled estimation or Wagner and Reichold (2023)
for group-mean estimation. In this case, one usually assumes that the regressors in a setting like (5)
are disjoint across equations (with some papers allowing for common regressors or factors in the
cointegrating linear case) and that the coefficients are pooled, i. e., identical across equations. In line
with the assumptions posited in classical panel analysis, the literature often assumes cross-sectional
independence and potentially cross-sectional i.i.d. behavior (see, e. g., Phillips and Moon, 1999). Fur-
thermore, it is customary, as in standard panel analysis, to include individual- and time-specific (fixed
or random) effects.

11Commencing from Yt = exp(θ lnAtut)K
α
t L

β
t taking logarithms leads, as is well known, to a line-

ar cointegrating relationship, i. e., lnYt = θ + lnAt + α lnKt + β lnLt + ut, if one assumes that
lnAt, lnKt, lnLt are integrated (but not cointegrated) and that ut is stationary.
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[
lnY1t

lnY2t

]
︸ ︷︷ ︸

=yt

=

[
θ1,1 1 α1 β1 0 0

θ2,1 1 0 0 α2 β2

]
︸ ︷︷ ︸

=Θ



1

lnAt

lnK1t

lnL1t

lnK2t

lnL2t


︸ ︷︷ ︸

=Zt

+

[
u1t

u2t

]
︸ ︷︷ ︸

=ut

,

xt = xt−1 + vt,

with xt = (lnAt, lnK1t, lnL1t, lnK2t, lnL2t)
′, i. e., Zt = (1, x′t)

′.12 In the notation of (1),

the elements of Zt are of the form zit = ti0(lnAt)
i1(lnK1t)

i2 · · · (lnL2t)
i5 . Since the Cobb-

Douglas system corresponds to a system of (log-)linear cointegrating relationships, the

multi-indices i are given by (0, 0, . . . , 0) (the intercept) or i0 = 0 and exactly one ij = 1

for j = 1, . . . , 5 (the five integrated regressors), i. e., I = {(0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0),
. . . , (0, 0, 0, 0, 0, 1)} and |I| = 6.13

The example illustrates several important aspects: As mentioned above, rewriting sys-

tems of seemingly unrelated cointegrating regressions into the systems format considered

in this paper leads to block-zero restrictions in rows of the coefficient matrix Θ, in this

case for the two equation-specific variables capital and labor. Common integrated regres-

sors (across all equations), in this example lnAt, do not lead to row-wise zero restrictions.

Since we assume in this example that lnAt enters the production function one-to-one,

the corresponding elements in Θ are restricted to be equal to one. However, one may

want to estimate the corresponding coefficients, θ1,A and θ2,A say, to test whether the

coefficients are identical (and/or equal to one). Other hypotheses that one may want

to test in this example are constant returns to scale, i. e., α + β = 1, either in one or

both equations, or the same (in case of constant returns to scale) factor shares in both

countries, i. e., α1 = α2.
14 Note that OLS- and GLS-type estimation do, in general,

12The ordering of the stochastic regressors in xt chosen here, with first the common regressor and then
the country-specific regressors ordered by equation is, of course, only one possibility. Knorre and
Wagner (2024), e. g., order common regressor(s) last.

13Linking back to the standard notation defined above, e. g., α1 corresponds to θ1,(0,0,1,0,0,0).
14In the Translog case, testing for constant returns to scale involves several hypotheses. In the example of

Remark 1 these are (omitting the equation index): θ(0,1,0)+θ(0,0,1) = 1, θ(0,2,0)+θ(0,0,2)+θ(0,1,1) = 0
and θ(0,2,0) = θ(0,0,2).
One can also perform specification testing, using, e. g., a Translog system as a more general alterna-
tive to a Cobb-Douglas system and test the corresponding zero restrictions to the squared production
factors and the cross-product of the two production factors. In fact, one interpretation of the Translog

9



not coincide for this system, if one imposes the restrictions on Θ for estimation. This

exemplifies the need for considering both OLS- and GLS-type estimators.

Remark 3. In (1) we allow only for polynomial time trends, i. e., terms corresponding

to multi-indices of the form (i0, 0, . . . , 0) for i0 ≥ 0. However, more general deterministic

components can, of course, be included, e. g., in a regression model of the form:

yt = ΘDDt +ΘZt + ut, (6)

xt = xt−1 + vt,

with Zt containing only zit with multi-indices where minj=1,...,m ij > 0. In this case, it

suffices to assume for Dt ∈ Rp that there exists a sequence of p× p scaling matrices AD

and a p-dimensional vector of functions D(z) such that for 0 ≤ r ≤ 1 it holds that:

lim
T→∞

T 1/2ADD⌊rT ⌋ = D(r) with 0 <

∫ r

0
D(z)D(z)′dz < ∞. (7)

It is also possible to have elements of a more general Dt-vector included in the cross-

product terms, provided asymptotic multi-collinearity is excluded.

2.2 Estimation and Inference

IM-OLS estimation is in fact nothing but OLS estimation of the partial sum version of

equation (1) that is augmented by the original integrated regressors:

Sy
t = ΘSZ

t + Γxt + Su
t , t = 1, . . . , T, (8)

= ΦS̃Z
t + Su

t ,

with Sy
t :=

∑t
j=1 yj , S

Z
t , S

u
t defined analogously, S̃Z

t := (SZ′
t , x′t)

′ and Φ := (Θ, Γ) ∈
Rn×(|I|+m). Stacking all observations, equation (8) can be written as:

Sy = ΘSZ + ΓX + Su, (9)

= ΦS̃Z + Su,

function is to consider it as a second-order Taylor approximation to an unknown more general pro-
duction function, see, e. g., Christensen et al. (1973) or Denny and Fuss (1977). This interpretation,
of course, leads to the potential consideration of higher-order Taylor approximations.
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with Sy := (Sy
1 , . . . , S

y
T ), S

Z := (SZ
1 , . . . , S

Z
T ), X := (x1, . . . , xT ), S

u := (Su
1 , . . . , S

u
T )

and S̃Z := (S̃Z
1 , . . . , S̃

Z
T ). Exactly as discussed in a closely related context in Wagner

(2023, Remark 1) and in fact known since Zellner (1962), see Footnote 9, for unre-

stricted systems of equations (that are linear in parameters) with identical regressors

in all equations, OLS estimation coincides (algebraically) with GLS estimation for any

(regular) weighting matrix. Consequently, with identical regressors in all equations and

without parameter restrictions, it suffices to consider the system version of the single

equation IM-OLS estimator for CMPRs discussed in Vogelsang and Wagner (2024).15

The IM-OLS estimator Φ̂ is defined as the OLS estimator of Φ in (9), i. e.,:

Φ̂ := (SyS̃Z′)(S̃Z S̃Z′)−1. (10)

The discussion of the asymptotic properties of the IM-OLS estimator requires the de-

finition of two quantities: First, the scaling matrix sequence AIM := diag(AIM,Θ, Im)

with AIM,Θ a diagonal matrix with the entry corresponding to regressor ti0xi11t · · ·x
im
mt

given by T−(i0+(
∑m

j=1 ij)/2+1/2). Second, the properly scaled partial sum process cor-

responding to the Second, the limit process corresponding to the regressors Zt, i. e.,

Z(r) := limT→∞ T 1/2AIM,ΘZ⌊rT ⌋ for 0 ≤ r ≤ 1, with Z(r) := (z1(r), . . . , z|I|(r))
′,

zi(r) := ri0Bv1(r)
i1 · · ·Bvm(r)

im for 0 ≤ r ≤ 1, i = 1, . . . , |I| and Bvj (r) denoting

the j-th component of Bv(r).

Proposition 1. Let the data be generated by (1) with appropriate assumptions in place.

Define Φ∗ := (Θ,ΩuvΩ
−1
vv ), then as T → ∞ it holds that:16

(Φ̂− Φ∗)A−1
IM ⇒ Ω

1/2
u·v

∫ 1

0
Wu·v(s)f(s)

′ds

(∫ 1

0
f(s)f(s)′ds

)−1

(11)

= Ω
1/2
u·v

∫ 1

0
dWu·v(s)[F (1)− F (s)]′

(∫ 1

0
f(s)f(s)′ds

)−1

,

where:

f(r) :=

[ ∫ r
0 Z(s)ds

Bv(r)

]
, F (r) :=

∫ r

0
f(s)ds. (12)

15Later, when discussing hypothesis testing and estimation under restrictions, it is convenient to consider
vectorized version(s) of (9), either vectorized by observation, i. e., vec(Sy) = (S̃Z′ ⊗ In)vec(Φ) +
vec(Su) or vectorized by equation, i. e., vec(Sy′) = (In ⊗ S̃Z′)vec(Φ′) + vec(Su′).

16To detail notation: The (i, j)-element of
∫ 1

0
dWu·v(s)[F (1) − F (s)]′ is given by

∫ 1

0
[Fj(1) −

Fj(s)]dWu·v,i(s).
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As indicated in Footnote 15, for hypothesis testing and estimation under restrictions, it

is convenient to consider the vectorized (by equation) version of the IM-OLS estimator

Φ̂ defined in (10). Defining ϕ := vec(Φ′) and ϕ∗ := vec(Φ∗′), this leads to:

ϕ̂ := vec
(
(S̃Z S̃Z′)−1(S̃ZSy′)

)
= (In ⊗ (S̃Z S̃Z′)−1)(In ⊗ S̃Z)vec(Sy′) (13)

and:

(In ⊗A−1
IM )

(
ϕ̂− ϕ∗

)
(14)

⇒ (Ω
1/2
u·v ⊗ I|I|+m)vec

((∫ 1

0
f(s)f(s)′ds

)−1 ∫ 1

0
[F (1)− F (s)]dWu·v(s)

′

)
.

Conditional upon Wv(r), the limiting distribution given in (14) is normal with zero mean

and (conditional) covariance matrix:

VIM := Ωu·v ⊗

((∫ 1

0
f(s)f(s)′ds

)−1

(15)

×
(∫ 1

0

[
F (1)− F (s)

][
F (1)− F (s)

]′
ds

)(∫ 1

0
f(s)f(s)′ds

)−1
)
.

Given a consistent estimator Ω̂u·v of Ωu·v, based on η̂t := (û′t, v
′
t)
′, with ût the OLS

residuals of (1), an – up to scaling – estimator of VIM immediately follows by simply

using the sample counterparts of the expressions appearing in the limit given in (15),

i. e.,:

V̂IM := Ω̂u·v ⊗ (S̃Z S̃Z′)−1CC ′(S̃Z S̃Z′)−1, (16)

with C := (c1, . . . , cT ), ct := SS̃Z

T − SS̃Z

t−1 for t = 1, . . . , T , SS̃Z

t :=
∑t

j=1 S̃
Z
j and SS̃Z

0 =

0. By construction, when Ω̂u·v → Ωu·v in probability, which holds under standard

assumptions on kernels and bandwidths (see, e. g., Jansson, 2002), it follows that (In ⊗
A−1

IM )V̂IM(In ⊗A−1
IM ) ⇒ VIM.

The limiting distribution given in (14), in conjunction with the estimator V̂IM given

in (16), allows for asymptotic standard inference for testing (linear) restrictions on ϕ

under two assumptions on the restrictions matrix, R say, that are detailed (for the

single-equation case) in Vogelsang and Wagner (2024, Section 2.2): The first relates to

the fact that the parameter vector ϕ̂ contains elements that converge at different rates,

which has some implications for hypotheses that lead to standard inference (encoded

12



in the matrix AR below). The second assumption on R, not explicitly stated in the

proposition, is that none of the hypotheses tested involves elements of Γ, which is not

estimated consistently.17

Proposition 2. Let the data be generated by (1) with appropriate assumptions in place

and assume that long-run covariance estimation is performed consistently. Consider s

linearly independent linear restrictions collected in:

H0 : Rvec(Φ′) = Rϕ = r, (17)

with R ∈ Rs×(|I|+m)n of full row rank, r ∈ Rs and suppose that there exists a matrix

sequence AR ∈ Rs×s such that:

lim
T→∞

A−1
R R(In ⊗AIM) = R∗, (18)

with R∗ ∈ Rs×(|I|+m)n of full row rank s. Then, it holds under the null hypothesis for

T → ∞ that the Wald-type statistic:

τW := (Rϕ̂− r)′
(
RV̂IMR

′
)−1

(Rϕ̂− r) ⇒ Os, (19)

with V̂IM as defined in (16) and Os denoting a chi-squared distributed random variable

with s degrees of freedom.

In the case that s = 1, it holds under the null hypothesis for T → ∞ that the t-type

statistic:

τt :=
Rϕ̂− r√
RV̂IMR′

⇒ Z, (20)

with Z denoting a univariate standard normally distributed random variable.

2.3 Estimation and Inference Under Restrictions

As discussed in Wagner (2023, Section 2.3), the cointegrating regression literature rarely

considers restricted least squares estimation, with one exception being the seemingly

17More formally, with K denoting the so-called commutation matrix, this means that for ϕ = vec(Φ′) =
Kvec(Φ) = K(vec(Θ)′, vec(Γ)′)′ it has to hold that Rϕ = RK(vec(Θ)′, vec(Γ)′)′ is of the form
RK = (Rvec(Θ), 0s×nm).
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unrelated regressions (SUR) cointegration literature, see, e. g., Moon (1999), Moon and

Perron (2004), Park and Ogaki (1991) or Wagner et al. (2020). When not all equations

include the same set of regressors, OLS- and GLS-type estimation, in general, cease to be

algebraically (and asymptotically) equivalent.18 Potential choices concerning weighting

matrices in seemingly unrelated cointegrating regression systems are discussed in Park

and Ogaki (1991), see also Wagner (2023). IM-GLS estimation adds one additional

formal aspect to the discussion: The errors in the partial sum regression are integrated

and, therefore, weighting matrices cannot be directly related to covariance or long-run

covariance matrices of the error process, but rather to the first differences of the errors,

motivating the Park and Ogaki (1991) choices W = Ω−1
uu or W = Ω−1

u·v also in the IM

setting.19 Clearly, restricted IM-OLS estimation is contained as the special case with

Ŵ = W = In.
20

To obtain a closed-form solution for the restricted estimator we consider, analogously to

hypothesis testing above, only affine restrictions on the parameter vector, i. e.,:

ϕ = vec(Φ′) = Dφ+ d, (21)

with D ∈ R(|I|+m)n×g of full column rank, φ ∈ Rg, arranged by equation similarly to

ϕ, and d ∈ R(|I|+m)n.21 Given the mentioned fact that only the parameters in Θ are

estimated consistently, we only consider restrictions on Θ and do not consider restrictions

involving elements of Γ. As above, we need once again to posit an asymptotic rank

condition on the constraint matrix, i. e., we need to assume that there exists a matrix

sequence AD ∈ Rg×g such that:

lim
T→∞

(In ⊗A−1
IM )DAD = D∗, (22)

with D∗ ∈ R(|I|+m)n×g of full column rank.

18We refer to GLS estimation for any variant of weighted least squares estimation and not – as in,
e. g., the classical Zellner (1962) setting – when weighting takes place with the inverse of the error
covariance matrix.

19We use the notation W for weighting matrices for obvious reasons and are confident that no confusion
with Wiener processes, always written with argument, i. e., as W (r), will occur.

20To be precise, the nT × nT weighting matrices considered in these cases are Ω−1
uu ⊗ IT , Ω

−1
u·v ⊗ IT and

In ⊗ IT , respectively. Note that all GLS results presented in this paper consider weighting matrices
of the form Ŵ ⊗ IT . From an algebraic perspective, one could, in principle, consider also “full”
Ŵ ∈ RnT×nT weighting matrices.

21As is well known, the explicit formulation of restrictions used in (21) is equivalent to the implicit for-
mulation Rϕ = r used in the discussion of the Wald-type test. Starting from the explicit formulation,
denote with D⊥ ∈ R(|I|+m)n×((|I|+m)n−g) a matrix of full column rank that fulfills D′

⊥D = 0. Then
R = D′

⊥, r = D′
⊥d and s = (|I|+m)n− g.
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Proposition 3. Let the data be generated by (1) with appropriate assumptions in place

and ϕ fulfilling the (explicit) restrictions posited in (21). Furthermore, assume that there

exists a matrix sequence AD such that condition (22) holds. The restricted integrated

modified generalized least squares (IM-GLS) estimator ϕ̂R of ϕ with symmetric weighting

matrix sequence Ŵ is defined as:

ϕ̂R := Dφ̂+ d, (23)

with:

φ̂ :=
(
(D′(Ŵ ⊗ S̃Z S̃Z′)D

)−1
(24)

×
(
D′
(
vec
(
S̃ZSy′Ŵ

)
− (Ŵ ⊗ S̃Z S̃Z′)d

))
.

For φ∗ such that ϕ∗ = Dφ∗ + d, it holds for T → ∞ and Ŵ → W > 0 that:

A−1
D (φ̂− φ∗) ⇒

(
D∗′
(
W ⊗

∫ 1

0
f(s)f(s)′ds

)
D∗
)−1

(25)

×
(
D∗′vec

(∫ 1

0

[
F (1)− F (s)

]
dBu·v(s)

′W

))
.

The limiting distribution of φ̂ given in (25) is – conditional upon Wv(r) – normal with

zero mean and covariance matrix:

VIM,R := A−1BA−1, (26)

with:

A := D∗′
(
W ⊗

∫ 1

0
f(s)f(s)′ds

)
D∗, (27)

B := D∗′
(
WΩu·vW ⊗

∫ 1

0

[
F (1)− F (s)

][
F (1)− F (s)

]′
ds

)
D∗. (28)

An estimator of VIM,R is readily available, analogously to (16) and, therefore, asymp-

totically chi-squared or standard normal inference on φ follows, under conditions (22)

and (30), similarly to Proposition 2:22

22Clearly, as already discussed below (21), since the elements of φ that correspond to elements of Γ are
not estimated consistently, the hypotheses are only allowed to involve entries of φ corresponding to
elements of Θ. Furthermore, note that the limiting distribution of ϕ̂R is, by construction, singular
unless D is a regular matrix.
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Proposition 4. Let the data be generated by (1) with appropriate assumptions in place

and assume that long-run covariance estimation is performed consistently. Let the pa-

rameter vector φ in ϕ = Dφ+d with condition (22) in place fulfill sφ linearly independent

restrictions, i. e.,:

H0 : Rφφ = rφ, (29)

with Rφ ∈ Rsφ×g with full row rank sφ and rφ ∈ Rsφ. Furthermore, assume that there

exists a matrix sequence Aφ ∈ Rsφ×sφ such that:

lim
T→∞

A−1
φ RφAD = R∗

φ (30)

exists and has full row rank sφ and that Ŵ → W > 0 in probability. Then, it holds

under the null hypothesis for T → ∞ that the Wald-type statistic:

τW,R := (Rφφ̂− rφ)
′
(
RφÂ

−1B̂Â−1R′
φ

)−1
(Rφφ̂− rφ) ⇒ Osφ , (31)

with Osφ denoting a chi-squared distributed random variable with sφ degrees of freedom

and:

Â := D′(Ŵ ⊗ S̃Z S̃Z′)D, (32)

B̂ := D′(Ŵ Ω̂u·vŴ ⊗ CC ′)D. (33)

In the case that sφ = 1, a t-type statistic that is asymptotically standard normally dis-

tributed can be defined analogously to Proposition 2.

Remark 4. To illustrate matters, let us consider the Cobb-Douglas system from Re-

mark 2 again. For this example, we have:

Φ =

[
θ1,1 1 α1 β1 0 0 γ1,1 . . . γ1,5

θ2,1 1 0 0 α2 β2 γ2,1 . . . γ2,5

]
∈ R2×11,

with γh,j , h = 1, 2(= n) and j = 1, . . . , 5(= m), denoting the coefficients in Γ. Since there

are 16 free parameters in Φ, using the notation as defined in (21), this implies that D ∈
R22×16, φ ∈ R16 and d ∈ R22. More specifically, φ = (θ1,1, α1, β1, γ1,1, . . . , γ1,5, θ2,1, α2, β2,

γ2,1, . . . , γ2,5)
′ and d = (0, 1, 0, . . . , 0, 1, 0, . . . , 0)′ with the two 1-entries in the second and

thirteenth coordinate. The rows of the matrix D are all of the form (i) one 1-entry, rela-

ting an element of φ, i. e., one of the unknown parameters, to an unrestricted coordinate
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of ϕ, and all other entries equal to zero, or (ii) zeros only, corresponding to coordinates

in ϕ that are fixed (either at zero or one in this example).23

Next, consider restrictions on the elements of φ. The joint null hypothesis of constant

returns to scale in both countries and equal factor shares corresponds to H0 : α1 + β1 =

1, α2 + β2 = 1, α1 = α2:
24

Rφφ =

 0 1 1 0 . . . 0 0 0 0 0 . . . 0

0 0 0 0 . . . 0 0 1 1 0 . . . 0

0 1 0 0 . . . 0 0 −1 0 0 . . . 0

φ =

 1

1

0

 = rφ.

For this example, condition (22) is satisfied with AIM = diag(T−1/2, T−1I5, I5), AD =

I2⊗diag(T−1/2, T−1I2, I5) and D = D∗. That D = D∗ stems directly from the fact that

in each of the hypotheses considered only coefficients with the same convergence rate

are involved. This is a “standard testing” situation in which the rank constraint (22) is

satisfied trivially. The same observation holds true also for testing constant returns to

scale of Translog production functions (see Footnote 14).

Remark 5. Note that, exactly as discussed in Wagner (2023, Remark 1), for restrictions

of the form D = In ⊗ D, with an asymptotic rank condition of the form (22) holding

for a full rank limiting matrix D∗ = In ⊗D∗, the IM-GLS estimator coincides with the

IM-OLS estimator for any positive definite symmetric weighting matrix Ŵ .

2.4 Fixed-b Inference

As mentioned in the introduction, one advantage of the IM-OLS estimator introduced

for single-equation cointegrating linear regressions in Vogelsang and Wagner (2014) and

extended to the single-equation CMPR setting in Vogelsang and Wagner (2024) is that

it can be used for asymptotically pivotal fixed-b inference. In the CMPR setting, see

Vogelsang and Wagner (2024, Corollary 1 and Proposition 3), asymptotically pivotal

fixed-b inference requires full design of the regression model. Full design means that the

limit process Z(r) can be written as Z(r) = ΠZZW (r), with ΠZ a regular matrix and

ZW (r) a functional of standard Brownian motions.25

23This occurs in coordinates (and rows of D) two, five, six and 13 to 15 of ϕ.
24Equivalently, one can also take β1 = β2 as third linearly independent restriction.
25Full design of (S)CMPRs can always be achieved by adding regressors, see the (single-equation) dis-

cussion in Vogelsang and Wagner (2024).
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The system CMPR setting considered in this paper adds another complexity to asymp-

totically pivotal fixed-b inference: The key quantity in fixed-b inference is a modified

estimator Ω̂u·v,M of Ωu·v constructed from modified residuals Ŝu
t,M as defined below. In

the system case considered, this long-run covariance matrix is now, obviously, an n× n

matrix rather than, as in Vogelsang and Wagner (2014, 2024), a scalar. With respect

to VIM, this implies that (using a lower case letter for a scalar quantity) the variance

scaling factor in the test statistic is not of the form ωu·v times a matrix but, see (15),

given by the Kronecker product of Ωu·v and a matrix, M say. This implies, see the proof

of Proposition 5, that a sufficient condition for asymptotically pivotal fixed-b inference

is that the restrictions matrix R ∈ Rs×(|I|+m)n – in Rϕ = r – fulfills R = In ⊗R, with

R ∈ Rs/n×(|I|+m), with sR := s
n a (positive) integer. This allows to perform fixed-b

inference for testing up-to-the-intercept-identical hypotheses in all equations in systems

with identical regressors in all equations. Whilst this is clearly restrictive, it, e. g., in-

cludes RESET-type specification testing for SUCPR systems with identical regressors in

all equations in both the null specification and the augmented regression.

Proposition 5. Let the data be generated by (1) and assume that full design prevails.

Consider s = sRn linearly independent restrictions collected in:26

H0 : Rvec(Φ′) = (In ⊗R)ϕ = r, (34)

with R ∈ RsR×(|I|+m) of full row rank sR, r ∈ RsRn and suppose that there exists a

matrix sequence AR ∈ RsR×sR such that:

lim
T→∞

A−1
R RAIM = R∗, (35)

with R∗ ∈ RsR×(|I|+m) of full row rank sR. Then, it holds under the null hypothesis for

T → ∞ that the fixed-b Wald-type statistic:

τW,b := (Rϕ̂− r)′
(
RV̂IM,MR

′
)−1

(Rϕ̂− r) ⇒ Z ′
sRn(Q(P )−1 ⊗ IsR)ZsRn, (36)

with V̂IM,M defined similarly as V̂IM in (16), but with Ω̂u·v replaced by Ω̂u·v,M, defined

in (37) below, and ZsRn an sRn-dimensional standard normally distributed random vec-

26As in Proposition 2, we assume that none of the hypotheses tested involves elements of Γ, compare
Footnote 17. This requires the last m columns of R to be zero.
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tor independent of Q(P ). The precise form of Q(P ) depends on the specification of the

SCMPR (1), the kernel function k(·) and the bandwidth-to-sample-size ratio 0 < b ≤ 1.27

It is key for asymptotically pivotal fixed-b inference that ZsRn and Q(P ) in (36) are in-

dependent random variables. The necessity to achieve independence implies (for exactly

the same reason as discussed in detail in Vogelsang and Wagner, 2014, 2024) that, as

indicated above, Ωu·v cannot be estimated using the IM-OLS residuals Ŝu
t := Sy

t − Φ̂S̃Z
t

and Ŝu := (Ŝu
1 , . . . , Ŝ

u
T ). Instead, orthogonalized modified residuals, Ŝu

t,M, have to

be used to annihilate (nuisance-parameter-dependent) correlation. These are given

by Ŝu
M := Ŝu

(
IT −M⊥′(M⊥M⊥′)−1M⊥), with M⊥ := M(IT − S̃Z′(S̃Z S̃Z′)−1S̃Z),

M := (M1, . . . ,MT ) and Mt := t
∑T

j=1 S̃
Z
j −

∑t−1
j=1

∑j
s=1 S̃

Z
s for t = 1, . . . , T . The

required modified estimator of Ωu·v is now defined as:

Ω̂u·v,M := T−1
T∑
i=2

T∑
j=2

k

(
|i− j|
B

)
∆Ŝu

i,M∆Ŝu′
j,M, (37)

⇒ Ω
1/2
u·vQ(P )Ω

1/2′
u·v ,

with kernel function k(·) and bandwidth B = bT for some 0 < b ≤ 1.

Remark 6. Let us illustrate the scope of fixed-b inference with the Translog example

discussed in Remark 1 and the Cobb-Douglas example in Remarks 2 and 4. The two-

outputs Translog example is an unrestricted system, i. e., a system with identical regres-

sors with unrestricted coefficients in both equations. It is therefore possible to perform

fixed-b inference for testing whether the system is in fact Cobb-Douglas, corresponding

to the coefficients to the squared production factors and the cross product being zero

in both equations, or whether both outputs are produced with constant returns to scale

(with the corresponding hypotheses given in Footnote 14). For the Cobb-Douglas exam-

ple fixed-b inference is not available since the starting point is, due to country-specific

production factors, a restricted system of equations (with block-zero restrictions in the

parameter matrix Θ.

27Given the comparably limited scope for fixed-b inference in the SCMPR setting, we abstain from
explicitly stating and defining all necessary quantities. The stochastic process P (r) is the multivariate
analogue of P (r) as defined in Vogelsang and Wagner (2024, Proposition 3). The key difference is
that Wu·v(r) is now an n-dimensional rather than a scalar process. The other elements constituting
P (r) – g(r), G(r), h(r) and H(r) – are exactly as in Vogelsang and Wagner (2024, Corollary 1 and
Proposition 3). Furthermore, the form of the functional(s) Q(P ) is exactly as given above Vogelsang
and Wagner (2024, Proposition 3), conveniently defined there already for the multivariate case.
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Remark 7. Note that if the restrictions considered in this subsection are not rejected,

the discussion in Footnote 21 clarifies that the corresponding restricted estimation prob-

lem is, unsurprisingly, subject to the type of restrictions discussed in Remark 5. This

is a situation in which IM-GLS coincides with IM-OLS, or, in other words, the fixed-b

discussion in this paper is (algebraically) confined to IM-OLS.

3 Summary and Conclusions

This paper has extended integrated modified least squares estimation theory from the

single equation cointegrating multivariate polynomial regression setting considered in Vo-

gelsang and Wagner (2024) to the systems case. It is important to note that the CMPR

and SCMPR setting allow to overcome the ubiquitous additive separability assumption

between integrated regressors in the nonlinear cointegrating regression literature, ad-

mittedly only for polynomial functions. Whilst this is, of course, a very special class

of functions it (i) includes the relevant case of Translog-type (systems of) equations,

(ii) allows for RESET-type specification testing and (iii) is an important starting point

for multivariate Sieve-type (or Taylor) approximation of more general (differentiable)

functions.

Considering systems of equations adds two aspects compared to single equation analysis.

First, it necessitates the detailed consideration of not only ordinary least squares but also

generalized least squares estimators. This stems from the well-known fact that OLS and

GLS estimators only necessarily coincide in equation systems with identical regressors

across all equations and without parameter constraints (as shown in Zellner, 1962).

Whilst such an unrestricted system might be a valid starting point for empirical analysis,

the result of, e. g., specification testing or the imposition of restrictions stemming from

economic theory will typically be restricted systems. Consequently, we discuss in detail

inference for both unrestricted and restricted IM estimators. It furthermore turns out

that the scope of fixed-b inference is relatively limited. In addition to full design of the

regression system – a necessary condition also in the single-equation setting in Vogelsang

and Wagner (2024) – it turns out that fixed-b inference is only available for up-to-the-

intercept-identical hypotheses tested in all equations in systems with identical regressors

in all equations. Despite this being very restrictive, it allows, e. g., for RESET-type

specification testing for SUCPR systems with identical regressors in all equations in

both the null specification and the augmented regression.
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The methods developed in this paper are going to be used in future work to estimate

Translog-type production function systems, both at the aggregate (multi-)national level

as well as at the sectoral level.28 In addition, it may also be interesting to extend the

SUR-type theory of Knorre and Wagner (2024) from the SCPR to the SCMPR case

considered in this paper.
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Oesterreichische Nationalbank (Grant no. 18692). This paper was written whilst the

second author gratefully enjoyed the hospitality of the Robert Schuman Centre for Ad-

vanced Studies of the European University Institute during a Simone Veil Fellowship in

the first half of 2024. The views expressed in this paper are solely ours and not neces-

sarily those of the Bank of Slovenia or the European System of Central Banks. On top

of this the usual disclaimer applies.

References

Christensen, L.R., D.W. Jorgenson and L.J. Lau (1971). Conjugate Duality and the

Transcendental Logarithmic Production Function. Econometrica 39, 255–256.

Christensen, L.R., D.W. Jorgenson and L.J. Lau (1973). Transcendental Logarithmic

Production Frontiers. Review of Economics and Statistics 55, 28–45.

de Jong, R.M. and M. Wagner (2022). Panel Cointegrating Polynomial Regression Anal-

ysis and an Illustration with the Environmental Kuznets Curve. Econometrics and

Statistics, in press: https://doi.org/10.1016/j.ecosta.2022.03.005.

Denny, M. and M. Fuss (1977). The Use of Approximation Analysis to Test for Separa-

bility and the Existence of Consistent Aggregates. American Economic Review 67,

404–418.

28In the context of such an empirical analysis we will also delve into the finite sample performance
of the developed methods more systematically. Cursory simulation evidence suggests that in terms
of performance effectively the “usual kind of results” can be expected (compare, e. g., Wagner and
Hong, 2016; Wagner et al., 2020; Knorre and Wagner, 2024; Vogelsang and Wagner, 2024), also with
respect to the impact of the number of equations in relation to the sample size.

21

https://doi.org/10.1016/j.ecosta.2022.03.005


Jansson, M. (2002). Consistent Covariance Matrix Estimation for Linear Processes.

Econometric Theory 18, 1449–1459.

Kiefer, N.M. and T.J. Vogelsang (2005). A New Asymptotic Theory for

Heteroskedasticity-Autocorrelation Robust Tests. Econometric Theory 21, 1130–

1164.

Knorre, F. and M. Wagner (2024). Fully Modified OLS Estimation and Inference for

Seemingly Unrelated Cointegrating Polynomial Regressions with Common Inte-

grated Regressors. Mimeo.

Moon, H.R. (1999). A Note on Fully-Modified Estimation of Seemingly Unrelated Re-

gression Models with Integrated Regressors. Economics Letters 65, 25–31.

Moon, H.R. and B. Perron (2004). Efficient Estimation of the SUR Cointegration Re-

gression Model and Testing for Purchasing Power Parity. Econometric Reviews 23,

293–323.

Neave, H.R. (1970). An Improved Formula for the Asymptotic Variance of Spectrum

Estimates. Annals of Mathematical Statistics 41, 70–77.

Park, J.Y. and M. Ogaki (1991). Seemingly Unrelated Canonical Cointegrating Regres-

sions. Mimeo.

Phillips, P.C.B. and H.R. Moon (1999). Linear Regression Limit Theory for Nonstation-

ary Panels. Econometrica 67, 1057–1111.

Ramsey, J.B. (1969). Tests for Specification Errors in Classical Linear Least-Squares

Regression Analysis. Journal of the Royal Statistical Society B 31, 350–371.

Thursby, J.G. and P. Schmidt (1977). Some Properties of Tests for Specification Error

in a Linear Regression Model. Journal of the American Statistical Association 72,

635–641.

Vogelsang, T.J. and M. Wagner (2014). Integrated Modified OLS Estimation and Fixed-b

Inference for Cointegrated Regressions. Journal of Econometrics 178, 741–760.

Vogelsang, T.J. and M. Wagner (2024). Integrated Modified OLS Estimation and Fixed-

b Inference for Cointegrating Multivariate Polynomial Regressions. IHS Working

Paper Series 53.

22



Wagner, M. (2023). Fully Modified Least Squares Estimation and Inference for Systems

of Cointegrating Polynomial Regressions. Economics Letters 228, 111186.

Wagner, M. and S.H. Hong (2016). Cointegrating Polynomial Regressions: Fully Modi-

fied OLS Estimation and Inference. Econometric Theory 32, 1289–1315.

Wagner, M. and K. Reichold (2023). Panel Cointegrating Polynomial Regressions:

Group-Mean Fully Modified OLS Estimation and Inference. Econometric Reviews

42, 358–392.

Wagner, M., P. Grabarczyk and S.H. Hong (2020). Fully Modified OLS Estimation and

Inference for Seemingly Unrelated Cointegrating Polynomial Regressions and the

Environmental Kuznets Curve for Carbon Dioxide Emissions. Journal of Econo-

metrics 214, 216–255.

Zellner, A. (1962). An Efficient Method of Estimating Seemingly Unrelated Regressions

and Tests for Aggregation Bias. Journal of the American Statistical Association 57,

348–368.

Appendix: Proofs

Proof of Proposition 1. The result presents the system version of the IM-OLS estimator

and its asymptotic properties derived for the single-equation CMPR setting with n = 1 in

Vogelsang and Wagner (2024, Proposition 1) and follows upon combining the individual

equation results. ■

Proof of Proposition 2. Under the null hypothesis and condition (18) on AR, it holds

that:

A−1
R (Rϕ̂− r) =

(
A−1

R R(In ⊗AIM)
) (

(In ⊗A−1
IM )(ϕ̂− ϕ∗)

)
⇒ R∗Y,

with Y denoting the random variable (limiting distribution) given in (14). R∗Y is

under the null hypothesis – conditional upon Wv(r) – normally distributed with zero

mean and covariance matrix R∗VIMR
∗′. Under condition (18), it furthermore holds that

A−1
R RV̂IMR

′A−1′
R ⇒ R∗VIMR

∗′. Combining the two results now immediately leads to the

asymptotic chi-squared distribution for τW as defined in (19) by noting that conditional
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convergence to a chi-squared distribution that is (by definition) independent of Wv(r)

amounts to unconditional convergence. ■

Proof of Proposition 3. Centering of the IM-OLS estimator, compare Proposition 1,

takes place around Φ∗. Therefore, considering:

D′vec
(
S̃Z S̃Z′Φ∗′Ŵ

)
= D′(Ŵ ⊗ S̃Z S̃Z′)ϕ∗ = D′(Ŵ ⊗ S̃Z S̃Z′)(Dφ∗ + d),

implies:

φ̂− φ∗ =
(
D′(Ŵ ⊗ S̃Z S̃Z′)D

)−1 (
(D′vec

(
S̃Z(Sy − Φ∗S̃Z)′Ŵ

))
(38)

=
(
D′(Ŵ ⊗ S̃Z S̃Z′)D

)−1 (
D′vec

(
S̃Z(Su − ΩuvΩ

−1
vv X)′Ŵ

))
.

With condition (22) and Ŵ → W > 0 in probability in place, it follows from straight-

forward calculations that:

A−1
D (φ̂− φ∗) ⇒

(
D∗′
(
W ⊗

∫ 1

0
f(s)f(s)′ds

)
D∗
)−1

(39)

×
(
D∗′vec

(∫ 1

0
f(s)Bu·v(s)

′dsW

))
,

with the result as given in the main text in (25) following by partial integration. ■

Proof of Proposition 4. The result follows analogously to the result for the Wald-type

statistic for linear hypotheses on ϕ derived in Proposition 2. An additional complication

is that two asymptotic full rank conditions, one related to the matrix D relating φ and

ϕ, given in (22), and one related to the restrictions matrix Rφ, given in (30), have to be

fulfilled. Also, of course, Â and B̂ need to be properly scaled to converge. ■

Proof of Proposition 5. As in the proof of Vogelsang and Wagner (2014, Lemma 2), it is

easiest to establish the asymptotic behavior of the modified residuals Ŝu
⌊rT ⌋,M by noting

that they are equivalently given as the OLS residuals of the regression of Sy
t on S̃Z

t and

Mt. Based on this observation, it can be shown that T 1/2
∑⌊rT ⌋

t=2 ∆Ŝu
t,M ⇒ Ω

1/2
u·vP (r), with

P (r) defined similarly to (28) in Vogelsang and Wagner (2024), with the only difference

being that Wu·v(r) is now an n-dimensional process rather than a scalar process.29 The

29To be precise, P (r) :=
∫ r

0
dWu·v(s) −

∫ 1

0
dWu·v(s)[H(1) − H(s)]′

(∫ 1

0
h(s)h(s)′ds

)−1

h(r). Note that

H(r) is – which requires full design – a functional of standard Brownian motions.
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second important ingredient for asymptotically pivotal fixed-b inference is independence

of P (r) – as input in Q(P ) – and ZsRn = (R∗VIMR
∗′)−1/2(R∗Y). This can be shown

analogously to the n = 1 case in the proof of Vogelsang andWagner (2024, Proposition 3),

in particular (57)–(59).30 Write VIM as defined in (15) for brevity as VIM = Ωu·v⊗M and

consider – to conclude the proof – the asymptotic behavior of the modified covariance

estimator which is the central term in the fixed-b Wald-type statistic τW,b defined in (36):

A−1
R RV̂IM,MR

′A−1′
R ⇒ (In ⊗R∗)

(
Ω
1/2
u·vQ(P )Ω

1/2′
u·v ⊗M

)
(In ⊗R∗′) (40)

= Ω
1/2
u·vQ(P )Ω

1/2′
u·v ⊗ (R∗MR∗′)

= (Ωu·v ⊗R∗MR∗′)1/2 (Q(P )⊗ IsR) (Ωu·v ⊗R∗MR∗′)1/2′

= (R∗VIMR
∗′)1/2 (Q(P )⊗ IsR) (R

∗VIMR
∗′)1/2′.

Combining the parts defining τW,b establishes the result. ■

30Since Y, as given in (14), can – in the case of full design – be written as(
Ω

1/2
u·v ⊗Π−1′(

∫ 1

0
g(s)g(s)′ds)−1

)
vec

(∫ 1

0
[G(1)−G(s)]dWu·v(s)

′
)
, with Π := diag(ΠZ ,Ω

1/2
vv ), the rel-

evant component for showing independence is vec
(∫ 1

0
[G(1)−G(s)]dWu·v(s)

′
)
.
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