Inflation and the Joint Bond-FX Spanning Puzzle

Andreas Schrimpf
Bank for International
Settlements and CEPR

Markus Sihvonen
Bank of Finland

Ljublana December 2025

Introduction

 "Spanning puzzle" in the bond asset pricing literature (e.g. Duffee 11, Joslin et al. 14)

Spanning condition:

- Affine term structure models imply macro variables do not predict returns after linearly controlling for current yield curve factors (level, slope, curvature . . .)
- Information in macro factors already included in yield curve factors

But: macro variables like inflation and measures of real activity often found to predict returns/ yield changes on top of yield factors

Summary of Results

Theoretical

- Show that linear spanning holds for bond returns also in non-linear models (e.g. habit model)
- Show that it holds also for FX excess returns

Empirical

- Find that inflation rate predicts not only US bond returns but also dollar returns
- Also holds conditional on yield curve factors
- ⇒ A *joint* spanning puzzle for FX and bond returns

Incomplete information about Fed's reaction function as likely explanation

⇒ Higher inflation predicts unexpected MP tightening (MP surprises)

Literature Review

"Spanning Puzzle" in the Bond Predictability Literature

e.g. Duffee (11), Joslin, Priebsch & Singleton (14), Cieslak & Povala (15), Bauer & Rudebusch (21)

Non-linear Macro-finance Models

e.g. Wachter (06), Rudebusch & Swanson (12)

Currency Predictability

e.g. Hassan & Mano (18), Lustig, Roussanov & Verdelhan (19), Dahlquist & Penasse (22)

Expectational Errors and Central Bank Reaction Function

e.g. Gourinchas & Tornell (04), Cieslak (17), Schmeling, Schrimpf & Steffensen (22), Bauer & Swanson (23)

Standard Linear Spanning (Duffee 11, Joslin et al. 14)

- Consider a linear model with *m* state variables
- m yield curve factors capture information in these variables
- No variable should predict bond returns / yield changes after controlling for these m factors
- Assumes a weak invertibility condition

Linear spanning in non-linear models (New result)

- Consider a non-linear model with m state variables, e.g. habit (Wachter 06) or long-run risk model (Bansal & Yaron 04)
- Show there is still approximate linear spanning but with more factors than state variables
- Approximation similar to a higher order local approximation
- Approximation accurate in standard models
- See here for the details

Linear spanning of FX returns (New result)

- Linear spanning for FX: using sufficiently many home and foreign yield curve factors should embed all necessary information relevant for future returns
- Macro variables such as inflation should not predict FX excess returns on top of these factors
- Requires additional but weak technical conditions

Data

- Focus on US bond returns and dollar returns against 5 countries (Canada, Germany, Sweden, Switzerland and UK)
- Easily available yield curve data from central banks
- Monthly data between 1973-2023 (FX data starts in 1983)
- Use BBI/WMI data for exchange rates
- Annual US CPI inflation rate from FRED (real time!)
- Monetary policy shocks based on GSS (18) and NS (18)
- Interest rate forecasts from Consensus Economics
- Taylor rule coefficients from Lombardi et al. (25)

Predicting Monthly Returns with Inflation

	Panel A: No YC Controls				
	(1)	(2)	(3)	(4)	
	rx ¹⁰ Y	rx ^{FX}	Δy^{10Y}	Δs	
π	-12.25***	15.78**	0.909*	15.67**	
	(-2.73)	(2.00)	(1.73)	(2.03)	
N	608	480	608	480	
R ² (in %)	1.22	1.07	0.58	1.07	
	Panel B: With YC Controls				
	(1)	(2)	(3)	(4)	
	rx ¹⁰ Y	rx ^{FX}	Δy^{10Y}	Δs	
π	-14.46**	27.04***	1.682**	25.27***	
	(-2.29)	(3.15)	(2.36)	(3.07)	
N	608	480	608	480	
R ² (in %)	2.88	4.87	2.11	3.92	

t statistics in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Predicting Monthly Returns with Inflation: Summary

- 1 pp higher inflation leads to 12bps lower bond and 16bps higher dollar return
- Effects mainly due to changes in yields and dollar FX rates
- Predictability survives controlling for yield curve factors ⇒ spanning condition is violated
- How about mechanisms?

Predicting MP Shocks with Inflation

	Panel A: No YC Controls			
	(1)	(2)	(3)	
	Target	Path	ŇŚ	
π	0.0584	1.149***	0.306**	
	(0.47)	(2.30)	(2.39)	
	231	231	231	
R^2 (in %)	0.06	3.46	2.30	
	Panel B: YC Controls			
	(1)	(2)	(3)	
	Target	Path	ŇŚ	
π	0.148	1.14**	0.358**	
	(0.89)	(2.22)	(2.37)	
N	231	231	231	
R ² (in %)	5.53	11.15	11.99	

t statistics in parentheses

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

Predicting Yield Forecast Errors and Changes in Taylor Rule Coefficient on Inflation Using Inflation

Panel A: Long rate forecast errors				
	(1)	(2)		
	No YC Controls	YC Controls		
π	13.51	12.74**		
	(1.53)	(2.47)		
N	395	395		
$R^{2}(\%)$	5.04	42.09		
Panel B: Changes in the Taylor coefficient on inflation				
	(1)	(2)		
	No YC Controls	YC Controls		
π	0.168	0.219**		
	(1.01)	(2.09)		
N	405	405		
$R^{2}(\%)$	2.49	18.73		
* <i>p</i> < 0.1, ** <i>p</i> < 0.05, *** <i>p</i> < 0.01				

Rationalizing the results: a small model

- We do not take a strong stance on the specific model that explains the results
- However, we provide a stylized example of a model that could
- Assume risk neutral investors
- Fed sets the short rate according to $r_t = \phi \bar{\pi}_t + v_t$
- $\bar{\pi}_t$ is long run inflation and v_t is a random shock
- Assume $\bar{\pi}_t$ follows AR(1) but is unobserved by the agents

Agents short rate expectations follow a sticky expectations process

$$\mathbb{E}_{t}^{S}[r_{t+1}] = k\lambda \mathbb{E}_{t-1}^{S}[r_{t}] + (1-k)\lambda r_{t}$$

- This emerges as a solution to a filtration problem with unknown $\bar{\pi}_t$
- But it could also represent a simple behavioral rule.
- Forecast under FIRE: $\lambda \phi \bar{\pi}_t$
- High inflation predicts short rate increases
- The short rate increases lead to low bond returns and currency appreciation
- Inflation is also unspanned by yield curve factors

Conclusion

- Conceptual contribution: extend linear spanning to non-linear models and to FX rates
- Find inflation rates predict not only US bond returns but also dollar appreciation
- ⇒ Bond spanning puzzle is a joint bond-FX spanning puzzle ...
 - High inflation also predicts unexpected MP tightening
 - Rationalize the results with a simple model, where agents have incomplete information about Fed's reaction function.

Appendix: References

Bansal, R. and Yaron, A. (2004). Risks for the long run: A potential resolution of asset pricing puzzles. *The Journal of Finance*, 59(4):1481–1509.

Bauer, M. and Rudebusch, G. (2020). Interest rates under falling stars. *American Economic Review*, 110(5):1316–1354.

Cieslak, A. and Povala, P. (2015). Expected returns in treasury bonds. *The Review of Financial Studies*, 28(10):2859–2901.

Cieslak, A. (2017). Short-rate expectations and unexpected returns in treasury bonds. *Review of Financial Studies*, 31(9):3265–3306.

Dahlquist, M., & Pénasse, J. (2022). The missing risk premium in exchange rates. *Journal of financial economics*, 143(2), 697-715.

Appendix: References

Duffee, G. (2011). Information in (and not in) the term structure. The Review of Financial Studies, 24(9):2895-2934.

Joslin, S., Priebsch, M., and Singleton, K. (2014). Risk premiums in dynamic term structure models with unspanned macro risks. *The Journal of Finance*, 69(3):1197–1233.

Lustig, H., Stathopoulos, A., and Verdelhan, A. (2019). The term structure of currency carry trade risk premia. *American Economic Review*, 109(12).

Schmeling, M., Schrimpf, A., and Steffensen, S. (2022). Monetary policy expectation errors. *Journal of Financial Economics*, 146(3):841–858.

Wachter, J. (2006). A consumption-based model of the term structure of interest rates. *Journal of Financial Economics*, 79:365–399.

Appendix: Linear Spanning in Non-linear Models

- Two countries. Home state variables $x_t \in \mathbb{R}^{m \times 1}$ and foreign state variables $x_t^* \in \mathbb{R}^{m^* \times 1}$
- Yield of an *n* maturity home bond $y_t^n \equiv g(x_t)$, g generally non-linear
- Excess bond return $rx_{t,t+1}^n = -(n-1)y_{t+1}^{n-1} + ny_t^n y_t^1$
- Bond risk premium: $\mathbb{E}_t[rx_{t,t+1}^n] \equiv \Pi_n(x_t)$
- ullet (Log) exchange rate s_t (higher $s_t o$ dollar appreciation)
- Dollar excess return $s_{t+1} f_t$, f_t is forward rate
- FX risk premium $\mathbb{E}_t[s_{t+1} f_t] \equiv f(x_t^*) f(x_t)$

Appendix: Linear Spanning in Non-linear Models

- We approximate $y_t^n = g(x_t)$ by $y_t^n \approx A_n + B_n YCF_t$
- YCF_t is a vector of yield curve factors.
- To capture non-linearities can need more factors than state variables
- Approximation similar to a higher order local approximation
- Similarly $\mathbb{E}_t[rx_{t,t+1}^n] \approx C_n + D_n Y C F_t$
- and $\mathbb{E}_t[s_{t+1} f_t] \approx F_n + H_n Y C F_t + H_n^* Y C F_t^*$
- Expected Bond and FX returns only depend on yield curve factors!
- Nothing else should predict these returns once linearly controlling for them.

Appendix: Linear Spanning in Non-linear Models

- Show numerically that approximations accurate in standard models (e.g. habit)
- Results for bonds only require a weak invertibility condition
- For currencies they also require a separability condition (holds in standard models)
- Relaxing separability, need to also control for interactions between home and foreign factors
- Argue empirically that this does not change the results