Asset Purchase Programs and the Exchange Rate

Sinem Yağmur Toraman European Stability Mechanism

15th Workshop on Exchange Rates
December 3, 2025

Disclaimer: The views expressed in this paper are those of the author and do not necessarily represent those of the European Stability Mechanism.

Motivation

- Since the GFC, APPs became a part of the policy toolkit in AEs
- Pandemic highlighted a critical distinction: APPs for monetary policy vs. financial stability
 - Before 2020: Only AEs, Zero Lower Bound (ZLB) problem, depreciation of the exchange rate
 - 2020-2021: Both AEs and EMs, above the ZLB, appreciation of the exchange rate

Research Questions

- What is the impact of COVID-era APPs on exchange rates (XRs)?
 - Focus on EMs & provide a comparison with AEs
- Does the response of exchange rates to APPs differ between AEs & EMs?
 - If so, what drives these differences?

This paper

- Event set: construct a comprehensive event set for APP announcements
- Evidence: conduct an event-study to study the effect of APPs on the XR
 ⇒ APPs appreciate the XR in EMs, & robust to controlling confounding factors including Fed Swap lines
- Mechanism:
 - APPs appreciate the XR in EMs through a reduction in sovereign credit risk
 - ⇒ "Sovereign credit risk channel" of APPs in EMs

Outline

- Event set
- Event study analysis
 - Baseline results
 - Controlling for confounders
- 3 What drives the differences in the exchange rate response?
- Empirical Evidence
 - Q1: How do APSs affect sovereign credit risk & convenience yields?
 - Q2: What is the overall effect of APSs on the risk-free rate?
- Conclusion

Outline

- Event set
- Event study analysis
 - Baseline results
 - Controlling for confounders
- 3 What drives the differences in the exchange rate response?
- 4 Empirical Evidence
 - Q1: How do APSs affect sovereign credit risk & convenience yields?
 - Q2: What is the overall effect of APSs on the risk-free rate?
- Conclusion

Event set

- Countries: 23 EMs and 7 AEs
 - Implemented APPs in the COVID-19 period.
- March 2020 August 2021, daily frequency.
- Sample 98 announcements: EMs (60) and AEs (38) Figure
- Simultaneous policy announcements Details
- Data source: Collected from central bank websites. Fratto et al. (2021) and Rebucci et al. (2022).

Outline

- Event set
- 2 Event study analysis
 - Baseline results
 - Controlling for confounders
- 3 What drives the differences in the exchange rate response?
- 4 Empirical Evidence
 - Q1: How do APSs affect sovereign credit risk & convenience yields?
 - Q2: What is the overall effect of APSs on the risk-free rate?
- Conclusion

Event study analysis

APS measurement in the spirit of Rogers, Scotti, and Wright (2018)

- Asset prices respond only to unexpected changes Kuttner (2001)
 - Focus on the "surprise" component of asset purchase announcements
 - Short window around the APP announcement → causal effect
- APSs captured by the residuals $(\widehat{\epsilon_{i,t}})$ from:

$$\Delta i_{i,t}^{LT} = \alpha \Delta i_{i,t}^{ST} + \epsilon_{i,t}$$

- \bullet Δ : 2-day change around the APP announcement
- Δi_{+}^{LT} : change in the 10-year government bond yield in basis points
- Δi_{\star}^{ST} : change in the ST government bond yield in basis points
- Intuition: jumps in LT rates beyond ST rates via expectations channel
- Strategy: Δi_{\star}^{ST} : proxy for monetary policy surprises Zettelmeyer (2004)
- Outcome: $\widehat{\epsilon_{i,t}}$: additional movements in LT rates in excess of Δi_{*}^{ST}

Baseline Results

Asset purchase surprises appreciate local currency

$$\Delta e_{i,t} = \beta \widehat{\epsilon_{i,t}} + u_{i,t}$$

	EMs		AEs	
	Gov. & Private	Gov. only	Gov. & Private	Gov. only
β	0.016*** (0.002)	0.011*** (0.004)	0.055*** (0.012)	0.055*** (0.021)
Observations R-squared	50 0.177	44 0.083	28 0.413	19 0.391

Table 1: Bootstrapped standard errors are shown in parentheses.

Controlling for confounding factors

$$\Delta i_{\mathsf{EM},t}^{LT} = \alpha \Delta i_{\mathsf{EM},t}^{ST} + \beta D_t F_{\mathsf{EM},t}^{Fed} + \gamma \Delta i_t^{-\mathsf{AE},ST} + \delta F_t^{\mathsf{EM}} + \epsilon_{\mathsf{EM},t}$$
$$\Delta i_{\mathsf{AE},t}^{LT} = \alpha \Delta i_{\mathsf{AE},t}^{ST} + \beta D_t F_{\mathsf{AE},t}^{Fed} + \delta F_t^{\mathsf{AE}} + \epsilon_{\mathsf{AE},t}$$

- **1** Actions of the Fed $(F_{i,t}^{Fed})$ DollarIndex
 - multidimensionality of Fed policy actions with factor analysis Swanson (2021)
 - four factors: (i) FFR, (ii) FG, (iii) LSAP, (iv) SWAP factor
- **2** Actions of other major AE central banks $(\Delta i_t^{AE,ST})$
 - the average of the change in ST interest rates in other major AEs
- **3** Other actions taken by the country itself (F_t^i) \triangleright Simultaneous
 - sum of the total number of simultaneous policy announcements

Appreciation remains for EMs, but disappears for AEs

$$\Delta e_{i,t} = \beta^{\phi} \widehat{\epsilon_{i,t}} + u_{i,t}$$

	EMs		AEs		
	Gov. & Private	Gov. only	Gov. & Private	Gov. only	Gov. only [†]
β^{ϕ} (4-factor)	0.023*** (0.003)	0.017*** (0.004)	0.041 (0.037)	0.109*** (0.038)	0.063 (0.039)
$\frac{N}{R^2}$	50 0.279	44 0.156	28 0.038	19 0.138	18 0.078

- †: Excluding the announcement by the ECB
 - Credit risk heterogeneity in the Eurozone
 - E.g. Eligibility of Greek government debt securities for the PEPP

Outline

- Event set
- Event study analysis
 - Baseline results
 - Controlling for confounders
- 3 What drives the differences in the exchange rate response?
- 4 Empirical Evidence
 - Q1: How do APSs affect sovereign credit risk & convenience yields?
 - Q2: What is the overall effect of APSs on the risk-free rate?
- Conclusion

Through the lens of LR-UIP deviations

• LR-UIP holds if $\beta = 1$:

$$s_{t+k} - s_t = \alpha + \beta (i_{t,k} - i_{t,k}^*) + \epsilon_{t,t+k}$$

- LR-UIP is (not) rejected for EMs (AEs)
 Meredith & Chinn (1998), Lustig et al. (2019), Rebucci, Toraman, and Valente (2025)
- In EMs, APP transmission differs from AEs De Leo et al. (2025), Mimir & Sunel (2025)
- Set-up a no-arbitrage asset pricing framework where LR-UIP deviations are driven by
 - convenience yields Jiang et al. (2022)
 - sovereign credit risk Du and Schreger (2018)
- Claim: The ↓ in LT bond yields in EMs is due to ↓ default risk and ↑ bond scarcity, that risk-free rates do not necessarily ↓

Outline

- Event set
- Event study analysis
 - Baseline results
 - Controlling for confounders
- 3 What drives the differences in the exchange rate response?
- 4 Empirical Evidence
 - Q1: How do APSs affect sovereign credit risk & convenience yields?
 - Q2: What is the overall effect of APSs on the risk-free rate?
- Conclusion

Asset purchases decrease CDS spreads in EMs

Evidence of a "sovereign credit risk channel" of APPs in EMs

- Sovereign credit risk by CDS spreads
 - CDS: Sovereign credit default swap (CDS) spread Augustin et al. (2020)

$$\Delta CDS_{i,t} = \beta_1 \widehat{\epsilon_{i,t}} + u_{i,t}$$

			5-yea	ar		
	CDS		CIP		Pure CIP	
	EMs	AEs	EMs	AEs	EMs	AEs
β_1	0.435***	0.064*	0.529***	0.134	0.024	0.057
	(0.057)	(0.036)	(0.116)	(0.116)	(0.137)	(0.111)
N	53	36	45	36	45	36
R^2	0.323	0.084	0.155	0.047	0.000	0.007

No evidence for a convenience yield channel of COVID-APPs in AEs

- Relative convenience yields by CIP deviations Jiang et al. (2021)
 - ullet Intuition: Investors earn different CYs from US treasuries o CIP fails

$$ullet$$
 CIP $_{i,n,t}=y_{i,n,t}^{Govt}-
ho_{i,n,t}-y_{USD,n,t}^{Govt}$ Du and Schreger (2016), Du et al. (2018)

$$\Delta \mathit{CIP}_{i,t} = \beta_2 \widehat{\epsilon_{i,t}} + u_{i,t}$$

			o-yea	ar		
	CDS		CIP		Pure CIP	
	EMs	AEs	EMs	AEs	EMs	AEs
β_2	0.435***	0.064*	0.529***	0.134	0.024	0.057
	(0.057)	(0.036)	(0.116)	(0.116)	(0.137)	(0.111)
N	53	36	45	36	45	36
R^2	0.323	0.084	0.155	0.047	0.000	0.007

Accounting for credit risk matters for EMs

Both convenience yields & credit risk matters → Pure CIP
 Gourinchas & Dao (2025)

•
$$\mathit{CIP}^{\mathit{pure}}_{i,n,t} = \left(y^{\mathit{Govt}}_{i,n,t} - \mathit{CDS}_{i,n,t}\right) - \rho_{i,n,t} - y^{\mathit{Govt}}_{\mathit{USD},n,t}$$

$$\Delta \mathit{CIP}^{\mathit{pure}}_{i,t} = \beta_3 \widehat{\epsilon_{i,t}} + u_{i,t}$$

5-year

	CDS		CIP		Pure CIP	
	EMs	AEs	EMs	AEs	EMs	AEs
β_3	0.435***	0.064*	0.529***	0.134	0.024	0.057
	(0.057)	(0.036)	(0.116)	(0.116)	(0.137)	(0.111)
N	53	36	45	36	45	36
R^2	0.323	0.084	0.155	0.047	0.000	0.007

Q2: What is the overall effect of APSs on the LT risk-free rate?

Long-term risk-free rate does not necessarily decrease in EMs

$$\Delta y_{i,t}^{10y,rf} = \beta_1 \widehat{\epsilon_{i,t}} + \beta_2 EM_i * \widehat{\epsilon_{i,t}} + u_{i,t}$$

where

•
$$\Delta y_{EM,t}^{10y,rf} = \Delta y_{EM,t}^{10y} - \Delta CDS_{EM,t}^{5y} + \Delta PCIP_{EM,t}^{5y}$$

	Gov. & Private	Gov. only
β_1	0.858***	0.843***
	(0.226)	(0.284)
β_2	-0.816***	-0.846**
	(0.265)	(0.359)
N	67	52

Outline

- Event set
- 2 Event study analysis
 - Baseline results
 - Controlling for confounders
- 3 What drives the differences in the exchange rate response?
- 4 Empirical Evidence
 - Q1: How do APSs affect sovereign credit risk & convenience yields?
 - Q2: What is the overall effect of APSs on the risk-free rate?
- Conclusion

Conclusion

- Construct an event set covering 98 APPs
- Provide a comparison of APPs between AEs and EMs
 - EM appreciation is robust to accounting for control variables
- Explanation through the lens of LR-UIP deviations:
 - Evidence of a "sovereign credit risk channel" of APPs in EMs
- Policy implication:
 - EMs can use APPs to stabilize exchange rates
- Future research:
 - Comparing QE & FXI in EMs, and QE & SWAP lines in AEs

Thank you!

Summary Statistics for the Event Dates

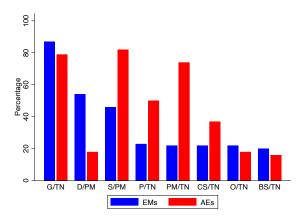


Figure 1: Relevant ratios for comparing the characteristics of the APP announcements and the accompanying events. Note: "O" stands for the other events, defined as the summation of FXI, Repo operations, and FX Swaps. The ratios for a specific group of countries, i.e., EMs or AEs, do not necessarily add up to 1, as there can be multiple accompanying events at a specific date.

Summary Statistics for the Event Dates

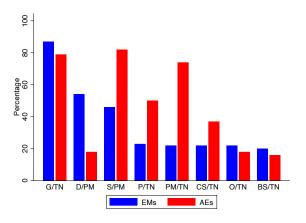


Figure 2: Relevant ratios for comparing the characteristics of the APP announcements and the accompanying events. Note:
"O" stands for the other events, defined as the summation of FXI, Repo operations, and FX Swaps. The ratios for a specific group of countries, i.e., EMs or AEs, do not necessarily add up to 1, as there can be multiple accompanying events at a specific date.

Summary Statistics

	EMs	AEs
Total Number of Events (TN)	60	38
Policy Meeting (PM)	13	28
Decrease in Rate (D)	7	5
Same Rate (S)	6	23
Amount Announced	49	34
Government Purchase (G)	52	30
Private Purchase (P)	14	19
Corporate Sector Measures (CS)	13	14
Banking Sector Measures (BS)	12	6
Foreign Exchange Intervention (FXI)	1	0
Repo Operation	8	3
FX Swap	4	4

Table 2: The summary statistics for the APP announcements and the accompanying events for EMs and AEs.

APP announcement dates • Back

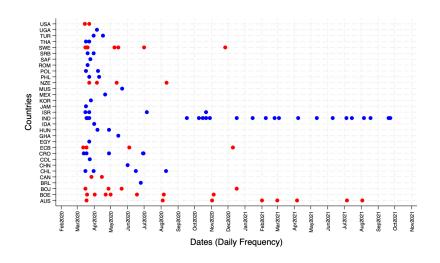


Figure 3: Note: Blue represents EMs, and red represents AEs.

Rogers, Scotti, and Wright (2018) methodology

Target surprise:

- change in yield on the current- or next-month federal funds futures contracts
- Forward guidance surprise: Residual from a regression where
 - the change in the yield for the fourth Eurodollar futures contract is regressed on the target surprise
- Asset purchase surprise: Residual from a regression where
 - the change in the 10-year Treasury futures is regressed onto the target and forward guidance surprises

Simultaneous policy announcements

- Foreign exchange intervention (FXI)
- Introduction/extension/expansion of a FX Swaps
- Introduction/extension/expansion Repo operations
- Introduction/extension/expansion of a measure targeting the banking sector or corporate sector
- Policy rate announcement

▶ Back

Asset Purchase Programs and Dollar Indices

Challenge: Depreciation of the Dollar is followed by the Fed's APP announcement

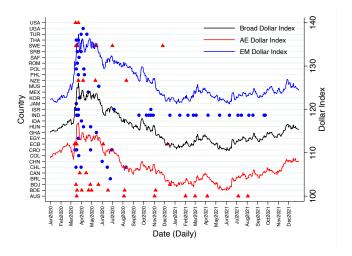


Figure 4: Asset purchase program announcements and Dollar Indices. Note: an increase in the dollar index represents an appreciation of the U.S. dollar.

Robustness Analysis • Back

- Post-GFC analysis for selected AEs using the same methodology
 - Using both daily and intraday data (Rogers et al., 2014)
- Different classifications for countries
 - Exchange rate regime (Ilzetzki et al., 2022)
 - Foreign investor share in total government debt (Arslanalp & Tsuda, 2014)
 - Commodity dependence (UNCTAD 2021 report)
 - Access to Fed SWAP lines
- All monetary policy announcements (Both MP & APP announcements)
- Controlling for forward guidance in AEs

Exchange rate determination equation

Multi-period bonds

▶ Back

$$\begin{split} s_{t} &= n \mathbb{E}_{t} \sum_{\tau=0}^{\infty} \left(y_{t+\tau}^{\$(n)} - y_{t+\tau}^{*(n)} \right) + \mathbb{E}_{t} \sum_{\tau=0}^{\infty} \left(\lambda_{t+\tau}^{\$,*} - \lambda_{t+\tau}^{*,*} \right) - \mathbb{E}_{t} \sum_{\tau=0}^{\infty} r p_{t+\tau}^{*} + \mathbb{E}_{t} \sum_{\tau=0}^{\infty} c p_{t+\tau}^{*} \\ &+ \mathbb{E}_{t} \sum_{\tau=0}^{\infty} \left(t p_{t+\tau}^{*,*} - t p_{t+\tau}^{\$,\$} \right) + \mathbb{E}_{t} \sum_{\tau=0}^{\infty} \left[\left(\lambda_{t+\tau}^{*,*} - \lambda_{t+\tau}^{*,*(n)} \right) - \left(\lambda_{t+\tau}^{\$,\$} - \lambda_{t+\tau}^{\$,\$(n)} \right) \right] + \overline{s}_{t} \end{split}$$

- $rp_t^* = -\operatorname{cov}_t\left(m_{t+1}^*, \Delta s_{t+1}\right), \ cp_t^* = -\operatorname{cov}_t\left(m_{t+1}^*, L_{t+1}^{*,*}\right)$
- $tp_t^{*,*} = -\cot_t(m_{t+1}^*, hy_{n,t+1}^*), tp_t^{\$,\$} = -\cot_t(m_{t+1}^\$, hy_{n,t+1}^\$)$
- hy_{n,t+1} is the difference between the holding period return of an n period bond for a single period and the return to a single period bond.
- LR-UIP deviations can be driven by: (i) relative convenience yields (CY), (ii)
 FX risk, (iii) credit risk (CR), (iv) relative term premium, (v) relative term structure of convenience yields

APPs and the Exchange Rate